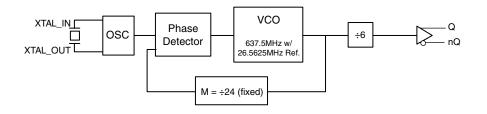
FemtoClock® Crystal-to-3.3V LVPECL **Clock Generator**

DATA SHEET

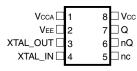
GENERAL DESCRIPTION

The ICS843011C is a Fibre Channel Clock Generator. The ICS843011C uses a 26.5625MHz crystal to synthesize 106.25MHz or a 25MHz crystal to synthesize 100MHz. The ICS843011C has excellent <1ps phase jitter performance, over the 637kHz - 10MHz integration range. The ICS843011C is packaged in a small 8-pin TSSOP, making it ideal for use in systems with limited board space.


FEATURES

- One differential 3.3V LVPECL output
- Crystal oscillator interface designed for 26.5625MHz, 18pF parallel resonant crystal
- Output frequency: 106.25MHz or 100MHz
- VCO range: 560MHz 680MHz
- RMS phase jitter @ 100MHz, using a 25MHz crystal (637kHz - 10MHz): 0.29ps (typical)
- 3.3V operating supply
- 0°C to 70°C ambient operating temperature
- · Available in lead-free (RoHS 6) packaging

FREQUENCY TABLE


Crystal (MHz)	Output Frequency (MHz)
26.5625	106.25
25	100

BLOCK DIAGRAM

1

PIN ASSIGNMENT

ICS843011C

8-Lead TSSOP 4.40mm x 3.0mm x 0.925mm package body **G** Package Top View

TABLE 1. PIN DESCRIPTIONS

Number	Name	Тур	Description
1	V _{CCA}	Power	Analog supply pin.
2	$V_{_{EE}}$	Power	Negative supply pin.
3, 4	XTAL_OUT, XTAL_IN	Input	Crystal oscillator interface. XTAL_IN is the input, XTAL_OUT is the output.
5	nc	Unused	No connect.
6, 7	nQ, Q	Output	Differential clock outputs. LVPECL interface levels.
8	V_{cc}	Power	Core supply pin.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, V_{CC} 4.6V

Inputs, V_i -0.5V to V_{CC} + 0.5V

Outputs, I_o

Continuous Current 50mA Surge Current 100mA

Package Thermal Impedance, θ_{JA} 101.7°C/W (0 mps) Storage Temperature, T $_{STG}$ -65°C to 150°C

NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

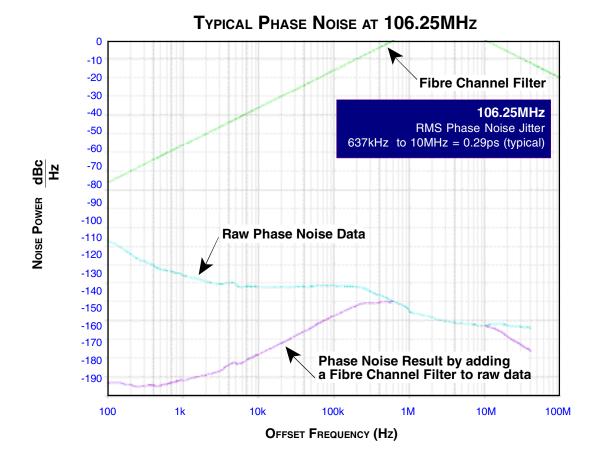
Table 2A. Power Supply DC Characteristics, $V_{CC} = 3.3V \pm 5\%$, $T_A = 0$ °C to 70°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{cc}	Core Supply Voltage		3.135	3.3	3.465	V
V _{CCA}	Analog Supply Voltage		V _{cc} - 0.12	3.3	V_{cc}	V
I _{CCA}	Analog Supply Current	included in I _{EE}			12	mA
I _{EE}	Power Supply Current				90	mA

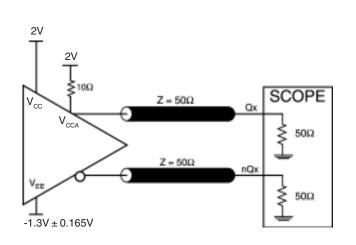
Table 2B. LVPECL DC Characteristics, $V_{CC} = 3.3V \pm 5\%$, Ta = 0°C to 70°C

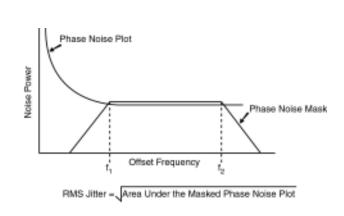
Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{OH}	Output High Voltage; NOTE 1		V _{cc} - 1.4		V _{cc} - 0.9	V
V_{OL}	Output Low Voltage; NOTE 1		V _{cc} - 2.0		V _{cc} - 1.7	V
V_{SWING}	Peak-to-Peak Output Voltage Swing		0.6		1.0	V

NOTE 1: Outputs terminated with 50 $\!\Omega$ to V $_{\!\scriptscriptstyle CC}$ - 2V.

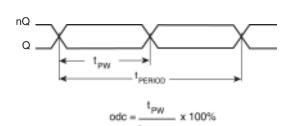

TABLE 3. CRYSTAL CHARACTERISTICS

Parameter	Test Conditions	Minimum	Typical	Maximum	Units
Mode of Oscillation		Fundamental			
Frequency		25		26.5625	MHz
Equivalent Series Resistance (ESR)				50	Ω
Shunt Capacitance				7	pF
Drive Level				1	mW

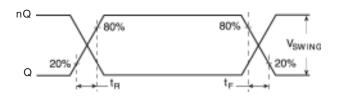

Table 4. AC Characteristics, $V_{CC} = 3.3V \pm 5\%$, Ta = 0°C to 70°C


Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
Е	Output Frequency	25MHz		100		MHz
F _{OUT}		26.5625MHz		106.25		MHz
±::±(<i>C</i> X)	RMS Phase Jitter (Random); NOTE 1	106.25MHz; Integration Range: 637kHz - 10MHz		0.29		ps
<i>t</i> jit(∅)		100MHz; Integration Range: 637kHz - 10MHz		0.29		ps
$t_{_{\rm R}}/t_{_{\rm F}}$	Output Rise/Fall Time	20% to 80%	250		500	ps
odc	Output Duty Cycle		49		51	%

NOTE 1: Please refer to the Phase Noise Plots.



PARAMETER MEASUREMENT INFORMATION



3.3V OUTPUT LOAD AC TEST CIRCUIT

RMS PHASE JITTER

OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD

OUTPUT RISE/FALL TIME

APPLICATION INFORMATION

Power Supply Filtering Techniques

As in any high speed analog circuitry, the power supply pins are vulnerable to random noise. The ICS843011C provides separate power supplies to isolate any high switching noise from the outputs to the internal PLL. V_{CC} and V_{CCA} should be individually connected to the power supply plane through vias, and bypass capacitors should be used for each pin. To achieve optimum jitter performance, power supply isolation is required. Figure 1 illustrates how a 10Ω resistor along with a $10\mu\text{F}$ and a $.01\mu\text{F}$ bypass capacitor should be connected to each V_{CCA} pin.

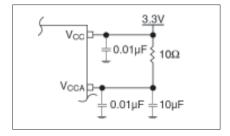


FIGURE 1. POWER SUPPLY FILTERING

CRYSTAL INPUT INTERFACE

The ICS843011C has been characterized with 18pF parallel resonant crystals. The capacitor values, C1 and C2, shown in *Figure 2* below were determined using an 18pF parallel resonant

crystal and were chosen to minimize the ppm error. The optimum C1 and C2 values can be slightly adjusted for different board layouts.

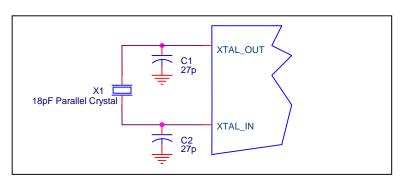


FIGURE 2. CRYSTAL INPUT INTERFACE

APPLICATION SCHEMATIC

Figure 3A shows a schematic example of the ICS843011C. An example of LVEPCL termination is shown in this schematic. Additional LVPECL termination approaches are shown in the LVPECL Termination Application Note. In this example, an 18 pF parallel resonant 26.5625MHz crystal is used for generating

106.25MHz output frequency. The C1 = 27pF and C2 = 27pF are recommended for frequency accuracy. For different board layout, the C1 and C2 values may be slightly adjusted for optimizing frequency accuracy.

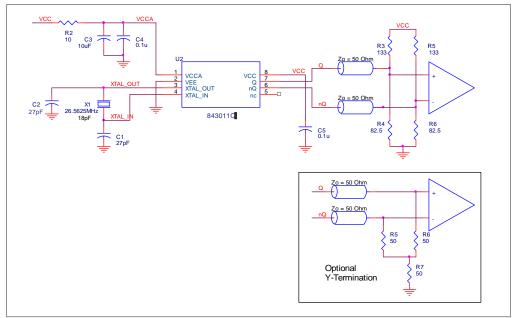


FIGURE 3A. ICS843011C SCHEMATIC EXAMPLE

PC BOARD LAYOUT EXAMPLE

Figure 3B shows an example of ICS843011C P.C. board layout. The crystal X1 footprint shown in this example allows installation of either surface mount HC49S or through-hole HC49 package. The footprints of other components in this example are listed in the *Table 6*. There should be at least one decoupling

C5 R2 V1 C3 C4

FIGURE 3B. ICS843011C PC BOARD LAYOUT EXAMPLE

capacitor per power pin. The decoupling capacitors should be located as close as possible to the power pins. The layout assumes that the board has clean analog power ground plane.

TABLE 6. FOOTPRINT TABLE

Reference	Size
C1, C2	0402
C3	0805
C4, C5	0603
R2	0603

NOTE: Table 6, lists component sizes shown in this layout example.

POWER CONSIDERATIONS

This section provides information on power dissipation and junction temperature for the ICS843011C. Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the ICS843011C is the sum of the core power plus the power dissipated in the load(s). The following is the power dissipation for $V_{cc} = 3.3V + 5\% = 3.465V$, which gives worst case results.

NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.

- Power (core)_{MAX} = V_{CC MAX} * I_{EE MAX} = 3.465V * 90mA = 311.85mW
- Power (outputs)_{MAX} = 30mW/Loaded Output pair

Total Power $_{\text{MAX}}$ (3.465V, with all outputs switching) = 311.85mW + 30mW = **341.85mW**

2. Junction Temperature.

Junction temperature at the junction of the bond wire and bond pad directly affects the reliability of the device. The maximum recommended junction temperature is 125°C. Limiting the internal transistor junction temperature, Tj, to 125°C ensures that the bond wire and bond pad temperature remains below 125°C.

The equation for Tj is as follows: Tj = θ_{LA} * Pd_total + T_A

Tj = Junction Temperature

 $\theta_{\text{\tiny IA}}$ = Junction-to-Ambient Thermal Resistance

Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)

T_a = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance $\theta_{\text{\tiny LA}}$ must be used. Assuming a moderate air flow of 1 meter per second and a multi-layer board, the appropriate value is 90.5°C/W per Table 5 below.

Therefore, Tj for an ambient temperature of 70° C with all outputs switching is: 70° C + 0.342W * 90.5° C/W = 101° C. This is well below the limit of 125° C.

This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow, and the type of board (single layer or multi-layer).

Table 5. Thermal Resistance $\theta_{,a}$ for 8-pin TSSOP, Forced Convection

θ_{JA} by Velocity (Meters per Second) 0 1 2.5 Multi-Layer PCB, JEDEC Standard Test Boards 101.7°C/W 90.5°C/W 89.8°C/W

3. Calculations and Equations.

The purpose of this section is to derive the power dissipated into the load.

LVPECL output driver circuit and termination are shown in Figure 4.

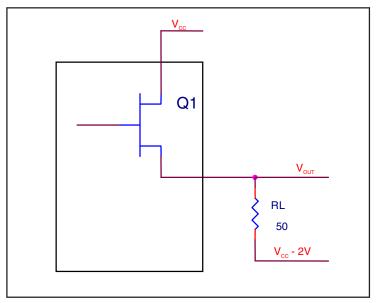


FIGURE 4. LVPECL DRIVER CIRCUIT AND TERMINATION

To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination voltage of V_{∞} - 2V.

• For logic high,
$$V_{OUT} = V_{OH_MAX} = V_{CC_MAX} - 0.9V$$

$$(V_{CCO MAX} - V_{OH MAX}) = 0.9V$$

• For logic low, $V_{OUT} = V_{OL MAX} = V_{CC MAX} - 1.7V$

$$(V_{CCO_MAX} - V_{OL_MAX}) = 1.7V$$

Pd H is power dissipation when the output drives high.

Pd_L is the power dissipation when the output drives low.

$$Pd_H = [(V_{\text{OH_MAX}} - (V_{\text{CC_MAX}} - 2V))/R]^* (V_{\text{CC_MAX}} - V_{\text{OH_MAX}}) = [(2V - (V_{\text{CC_MAX}} - V_{\text{OH_MAX}}))/R]^* (V_{\text{CC_MAX}} - V_{\text{OH_MAX}}) = [(2V - 0.9V)/50\Omega]^* 0.9V = \textbf{19.8mW}$$

$$Pd_L = [(V_{_{OL_MAX}} - (V_{_{CC_MAX}} - 2V))/R_{_{L}}] * (V_{_{CC_MAX}} - V_{_{OL_MAX}}) = [(2V - (V_{_{CC_MAX}} - V_{_{OL_MAX}}))/R_{_{L}}] * (V_{_{CC_MAX}} - V_{_{OL_MAX}}) = [(2V - 1.7V)/50\Omega] * 1.7V = 10.2mW$$

Total Power Dissipation per output pair = Pd_H + Pd_L = 30mW

RELIABILITY INFORMATION

Table 6. $\theta_{_{JA}} vs.$ Air Flow Table for 8 Lead TSSOP

 $\theta_{_{JA}}$ by Velocity (Meters per Second)

012.5Multi-Layer PCB, JEDEC Standard Test Boards101.7°C/W90.5°C/W89.8°C/W

TRANSISTOR COUNT

The transistor count for ICS843011C is: 2436

PACKAGE OUTLINE - G SUFFIX FOR 8 LEAD TSSOP

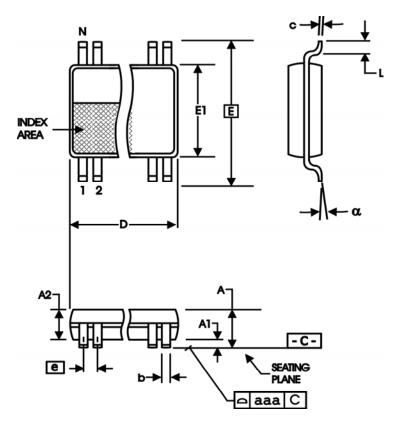


TABLE 7. PACKAGE DIMENSIONS

SYMBOL	Millin	neters	
STWIBOL	Minimum	Maximum	
N	1	3	
А		1.20	
A1	0.05	0.15	
A2	0.80	1.05	
b	0.19	0.30	
С	0.09	0.20	
D	2.90	3.10	
E	6.40 E	BASIC	
E1	4.30	4.50	
е	0.65 BASIC		
L	0.45	0.75	
α	0°	8°	
aaa		0.10	

Reference Document: JEDEC Publication 95, MO-153

Table 8. Ordering Information

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
843011CGLF	011CL	8 lead "Lead-Free" TSSOP	Tube	0°C to 70°C
843011CGLFT	011CL	8 lead "Lead-Free" TSSOP	Tape & Reel	0°C to 70°C

	REVISION HISTORY SHEET				
Rev	Table	Page	Description of Change	Date	
А	Т8	1 8 12	Deleted HiperClocks logo and reference sentence in General Description. Junction Temperature - updated paragraph. Ordering Information Table - deleted leaded parts, deleted tape & reel count, added nonleaded marking. Updated header and footer.	3/12/14	

We've Got Your Timing Solution.

6024 Silver Creek Valley Road San Jose, CA 95138

Sales

800-345-7015 (inside USA) +408-284-8200 (outside USA) Fax: 408-284-2775 www.IDT.com/go/contactIDT

Tech Support netcom@idt.com

+480-763-2056

DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT's sole discretion. All information in this document, including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.

IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.

Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third

Copyright 2014. All rights reserved.