Virtex-4 FPGA
User Guide

UGO070 (v2.6) December 1, 2008

SXILINX

2 XILINX®

Xilinx is disclosing this user guide, manual, release note, and/or specification (the "Documentation") to you solely for use in the development
of designs to operate with Xilinx hardware devices. You may not reproduce, distribute, republish, download, display, post, or transmit the
Documentation in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written consent of Xilinx. Xilinx expressly disclaims any liability arising out of your use of the Documentation. Xilinx reserves
the right, at its sole discretion, to change the Documentation without notice at any time. Xilinx assumes no obligation to correct any errors
contained in the Documentation, or to advise you of any corrections or updates. Xilinx expressly disclaims any liability in connection with
technical support or assistance that may be provided to you in connection with the Information.

THE DOCUMENTATION IS DISCLOSED TO YOU “AS-IS” WITH NO WARRANTY OF ANY KIND. XILINX MAKES NO OTHER
WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE DOCUMENTATION, INCLUDING ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT OF THIRD-PARTY
RIGHTS. IN NO EVENT WILL XILINX BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL
DAMAGES, INCLUDING ANY LOSS OF DATA OR LOST PROFITS, ARISING FROM YOUR USE OF THE DOCUMENTATION.

©2004-2008 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx
in the United States and other countries. The PowerPC name and logo are registered trademarks of IBM Corp. and used under license. All
other trademarks are the property of their respective owners.

Revision History

The following table shows the revision history for this document.

Date Version Revision
08/02/04 1.0 Initial Xilinx release. Printed Handbook version.
09/10/04 1.1 In Chapter 1, “Clock Resources”:

Removed Table 1-6: "BUFGMUX_VIRTEX4 Attributes". Updated Table 1-1, Table 1-2,
Table 1-5, the new Table 1-6. Revised Figure 1-2, Figure 1-5, Figure 1-6, Figure 1-7,
Figure 1-9, Figure 1-10, Figure 1-13, Figure 1-14, and Figure 1-16. Associated text around
these tables and figures were revised.

In Chapter 2, “Digital Clock Managers (DCMs)”, changes to “FACTORY_JF Attribute” and
in Table 2-6.

In Chapter 9, “System Monitor”:

Changed in Figure 9-4, Figure 9-5, Figure 9-7, Figure 9-8, Figure 9-9, Figure 9-10, Figure 9-21,
Figure 9-25, Figure 9-26, and Figure 9-27. Changes to the equation in the Temperature Sensor
section. The following tables had changes: Table 9-3, Table 9-5, Table 9-6, Table 9-9, Table 9-
11, Table 9-12, Table 9-14, and Table 9-15. Changes to the entire System Monitor Calibration,
System Monitor VHDL and Verilog Design Example sections.

02/01/05 1.2 In Chapter 1, “Clock Resources”, revised “Global Clock Buffers”, “Clock Regions”, and
“Clock Capable I/O” sections.

In Chapter 4, “Block RAM,” revised “Reset,” page 151 description and Table 4-13.

In Chapter 6, “SelectlO Resources,” removed the device configuration section. The Virtex-4
Configuration Guide describes this information in detail. Edited “SSTL (Stub-Series
Terminated Logic),” page 281. Replaced LVDS_25_DCI with LVDCI_25 in “Compatible
example:,” page 302. Added rule “7” to “DCl in Virtex-4 FPGA Hardware,” page 241. Added
“Simultaneous Switching Output Limits,” page 306.

Removed Chapter 9: System Monitor.

Virtex-4 FPGA User Guide www.xilinx.com UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Date

Version

Revision

04/11/05

1.3

Chapter 1: Revised Table 1-1, page 26, Figure 1-14, and “BUFR Attributes and Modes”
section including Figure 1-21, page 43.

Chapter 2: Revised FACTORY_]JF value in Table 2-6, page 65. Added “Phase-Shift Overflow”
section. Clarified global clock discussion in “Global Clock Buffers”, “Clock Regions”, and
“Clock Capable I/O”.

Chapter 4: Added “Built-in Block RAM Error Correction Code” section. Revised Figure 4-6
and Figure 4-8, page 123.

Chapter 5: Revised Table 5-1 and Table 5-2, page 184.
Chapter 6: Revised Table 6-29, page 290.
Chapter 7: Revised “REFCLK - Reference Clock” and added Table 7-10, page 326.

Chapter 8: Added “ISERDES Latencies,” page 379 and “OSERDES Latencies,” page 394.
Revised “Guidelines for Using the Bitslip Submodule” section.

09/12/05

1.4

Chapter 2: Revised FACTORY_JF value in Table 2-6, page 65. The LOCKED signal
description is updated in Figure 2-20 and Figure 2-21.

Chapter 6: Revised the “Simultaneous Switching Output Limits” section.
Chapter 8: Added more information to “Clock Enable Inputs — CE1 and CE2,” page 369.

03/21/06

1.5

Chapter 1: Updated description under Table 1-1. Updated Figure 1-21, page 43.

Chapter 4: Changed Table 4-8, page 144 and added a note. Updated the discussions in
NO_CHANGE Mode and Cascadable Block RAM sections. Removed synchronous FIFO
application example.

Chapter 5: Revised slice label in Figure 5-30, page 224.

Chapter 6: Added to the “Xilinx DCI” section. Added IBUF to the
“PULLUP/PULLDOWN/KEEPER for IBUF, OBUFT, and IOBUF” discussion. Added Vo
numbers in the +1.5V column in Table 6-5, page 258. Corrected Figure 6-70, page 292. Added
notes 4 and 5 to Table 6-38, page 299. Updated 3.3V I/O Design Guidelines “Summary,”
page 306. Added “HSLVDCI (High-Speed Low Voltage Digitally Controlled Impedance),”
page 259 section. Added 1.2V to Table 6-40, page 308, and added link to SSO calculator to
text above table. Added HSLVDCI to Table 6-42, page 310. Revised Virtex-4 (SX Family)
FF668 in Table 6-43.

Chapter 8: Revised “Clock Enable Inputs — CE1 and CE2”.
Chapter 9, “Temperature Sensing Diode”: Added the Virtex-4 temperature-sensing diode.

10/06/06

1.6

Chapter 7, “SelectlO Logic Resources”: Modified text in section “REFCLK - Reference
Clock” and deleted former Table 7-10.

UGO070 (v2.6) December 1, 2008 www.xilinx.com Virtex-4 FPGA User Guide

http://www.xilinx.com

Date

Version

Revision

01/04/07

2.0

Chapter 1, “Clock Resources”:

L4

“1/0 Clock Buffer - BUFIO”: Added “in the same region” to BUFIO ability to drive
BUFRs.

¢ “BUFG VHDL and Verilog Templates”: Corrected typo in VHDL template.
¢ “Regional Clocks and I/O Clocks”: Added reference to the PACE tool for identifying

clock regions.

Chapter 2, “Digital Clock Managers (DCMs)”:

L

¢
¢
¢

“Status Flags”: Corrected descriptions for Clock Events 2, 3, and 4.
“Input Clock Requirements”: Clarified when DCM output clocks are deskewed.
“Reset Input — RST”: Updated RST hold time to 200 ms after clock stabilization.

“Frequency Synthesizer Characteristics”: Added reference and link to a macro for
monitoring LOCKED.

Chapter 4, “Block RAM”:

¢
¢
¢

L
¢

“Data Flow”: Added paragraph clarifying ADDR setup/hold requirements.
Table 4-11: Corrected typo to ALMOST FULL.

“RAMB16 Port Mapping Design Rules”: Corrected logic level tie for unused
ADDRIA | B] pins to High.

“Synchronous Clocking”: Clarified synchronous write/read timing.
Deleted SIM_COLLISION_CHECK statements from all templates.

Chapter 6, “SelectlO Resources”:

*

L
¢
¢

¢
L

Figure 6-53: Corrected internal termination resistor designation.
Table 6-1: Updated LVITL DC voltage specifications.
Table 6-31 and following: Globally corrected OBUFGDS to OBUFTDS.

“Differential Termination Attribute”: Corrected paragraph describing use of
DIFF_TERM attribute.

“Xilinx DCI”: Added reference to section “Driver with Termination to VCCO /2 (Split
Termination).”

Figure 6-64: Corrected 1/0O standard name to DIFF_SSTL2_II.
Table 6-38: Corrected I/0 standard name to DIFF_HSTL_II_18_DCI.

Chapter 7, “SelectlO Logic Resources”:

*

“IDELAYCTRL Locations”: Reworded description of IDELAYCTRL locations in clock
regions.

Table 7-6: Added “when in Variable mode” to function descriptions of C, INC, and CE
ports.

Table 7-9: Added Note (1) to Tipgr AYRESOLUTION -

¢ Added requirement to wait 8 clock cycles after increment or decrement before

sampling IDELAY.

¢ Figure 7-12: Modified to show 8 clock cycle wait time.

¢ Modified timing description to match new Figure 7-12.
¢ “IDELAY VHDL and Verilog Instantiation Template”: Changed port map for C, CE,

INC, and RST from open to zero (both Verilog and VHDL).

Deleted synthesis translate_off/synthesis translate_on statements
from all IDELAY instantiation templates.

Virtex-4 FPGA User Guide

www.xilinx.com UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Date Version Revision
01/04/07 2.0 e Chapter 8, “Advanced SelectlO Logic Resources”:
(cont'd) (cont'd) ¢ Table 8-1: REV: Added instruction to connect to GND.

¢ Table 8-2: Corrected BITSLIP_ENABLE value from “String” to “Boolean”.

¢ “Registered Outputs — Q1 to Q6”: Added clarification on bit in/out sequence.

¢ “High-Speed Clock for Strobe-Based Memory Interfaces - OCLK”: Added instruction
to ground OCLK when INTERFACE_TYPE is NETWORKING.

¢ “BITSLIP_ENABLE Attribute”: Specified setting according to setting of
INTERFACE_TYPE.

¢ “INTERFACE_TYPE Attribute”: Added recommendation to use MIG when ISERDES
is in Memory Mode. Added Figure 8-6 to illustrate ISERDES internal connections in
Memory Mode.

¢ Added section “ISERDES Clocking Methods.”

¢ “ISERDES Width Expansion”: Added explanatory paragraph regarding master/slave
ISERDES use with differential/single-ended inputs.

¢ “Guidelines for Expanding the Serial-to-Parallel Converter Bit Width”: Corrected a
number of master/slave and input/output reversals.

¢ “Verilog Instantiation Template to use Width Expansion Feature”: Corrected a number
of errors in the template.

¢ “ISERDES Latencies”: Deleted former Table 8-4 and most of the text in this section and
replaced with statement relating latency to INTERFACE_TYPE.

¢ Deleted synthesis translate_off/synthesis translate_on statements
from all ISERDES instantiation templates.

¢ “Data Parallel-to-Serial Converter”: Added recommendation to apply a reset to
OSERDES prior to use.

¢ “OSERDES Width Expansion”: Added explanatory paragraph regarding master/slave
OSERDES use with differential /single-ended outputs.

¢ “OSERDES VHDL Template” in Chapter 8: Removed erroneous semicolon following
TRISTATE_WIDTH.

03/15/07 2.1 “ILOGIC Resources”: Added sentence clarifying SR and REV sharing between

ILOGIC/ISERDES and OLOGIC/OSERDES.
Figure 7-1: Removed OFB/TFB inputs and associated MUXes.
Figure 8-2: Removed OFB/TFB inputs.

“DIFF_SSTL2_II_DCI, DIFF_SSTL18_II_DCI Usage”: Removed incorrect bidirectional
link requirements and reference to on-chip differential termination.

“DClin Virtex-4 FPGA Hardware”: Modified point 3 detailing when VRP/VRN reference
resistors are not required.

“PULLUP/PULLDOWN/KEEPER for IBUF, OBUFT, and IOBUF”: Added a paragraph
recommending against using these circuits to drive a logic level on a board-level trace.

“Frequency Synthesizer Characteristics”: Updated information regarding the setting of
AUTOCALIBRATE and CONFIG STEPPING.

Added new section “FIFO16 Error Condition and Work-Arounds” in Chapter 4,
including VHDL/ Verilog source files in UG070 . zip.

Table 6-41: Added SSO data for FF676 device/package combinations.

UGO070 (v2.6) December 1, 2008 www.xilinx.com Virtex-4 FPGA User Guide

http://www.xilinx.com

Date Version Revision

04/10/07 2.2 Added section “Cascading DCMs” in Chapter 2.
Table 7-9: Deleted Note (1).
Figure 7-12: Added assumption that IOBDELAY_VALUE = 0 to text.
Section “IDELAY Timing”: Revised descriptions of Clock Events 1, 2, and 3 in Figure 7-12.
Added new section “Note on Instability after an Increment/Decrement Operation”.
Table 7-12: Revised description of CE port.
Chapter 8, “Advanced SelectlO Logic Resources”: ISERDES and OSERDES sections
extensively revised and expanded with many new figures and tables.

08/10/07 2.3 Figure 2-5 and associated text: Updated.

Figure 2-20: Corrected reset requirement from 3 periods to 200 ns.

Figure 2-22, associated text: Corrected number of clock cycles in Clock Event 4.
“Frequency Synthesizer Characteristics” in Chapter 2: Added note to indicate no need for
the LOCKED monitoring macro on recent step devices.

“SelectlO Resources Introduction” in Chapter 6: Added note that differential and
Vger-dependent inputs are powered by Vecaux:

“DCl in Virtex-4 FPGA Hardware” in Chapter 6: Removed erroneous reference to SSTL3
standard.

“Lower Capacitance I/O Attributes” in Chapter 6: Added RSDS_25 to list of standards
that do not have differential driver circuits.

Added Note (1) to Table 6-40.

Table 6-43: Included FX family devices and added note (3) for Banks 9 and 10.
“Temperature Sensor Examples” in Chapter 9: Added information on Texas Instruments
temperature sensor.

04/10/08 24 Table 2-6, page 65: Added CLK_FEEDBACK and DCM_AUTOCALIBRATION attribute
rows. Added descriptions to CLKEX_DIVIDE and CLKFEX_MULTIPLY rows.
“DCM_AUTOCALIBRATION Attribute,” page 68: New section.

Figure 2-9, page 84 and Figure 2-11, page 85: Removed element from Q output.

Under Figure 3-5, page 104: Clarified bullet regarding RST must be Low before REL has
an effect.

Figure 4-11, page 142: Removed REGCEN.

Table 6-40, page 308: Added LVCMOS15_16_fast, LVDCI_DV2_18, and LVTTL24_fast.
“REFCLK - Reference Clock,” page 342: Changed IDELAYCTRL_REF_PRECISION units
to MHz.

Figure 7-21, page 355: Corrected OFFDDRB labeling.

06/17/08 2.5 Figure 2-4, page 73: Revised the contents of the DCM block.

“System-Synchronous Setting (Default),” page 73: Added text to the end of the section
describing cases when the DESKEW_ADJUST parameter has no effect.

12/01/08 2.6 “Asynchronous Clocking,” page 119: Added the results of performing a read and write

operation.
Figure 6-6, page 238: Moved VREF to be inside the FPGA.

“DCl in Virtex-4 FPGA Hardware,” page 241: Added SSTL18_I_DCI to the list of DCI
outputs that do not require reference resistors on VRP/VRN.

Figure 7-10, page 330: Updated figure title.

Virtex-4 FPGA User Guide

www.xilinx.com UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Table of Contents

Revision History 2

Preface: About This Guide

Guide Contents 21
Additional Documentation................. 21
Additional Support Resources................. 22
Conventions i 22
Typographical. 22
Online DoCUmMEeNtot 23

Chapter 1: Clock Resources

Global and Regional Clocks..............., 25
Global CloCKS . . oottt 25
Regional Clocks and I/OClocks i i i i 25

Global Clocking Resources............... 25
Global Clock Inputs 26

Global Clock Input Buffer Primitives i, 26
Power Savings by Disabling Global Clock Buffer.............................. 27
Global Clock Buffers e e e 27

Global Clock Buffer Primitiveso oottt it et 28

Additional Use Models.ottt e e e 36
Clock Treeand Nets - GCLK i e 38
Clock Regions 38

Regional Clocking Resources................o, 39
Clock Capable I/O. 40
I/O Clock Buffer - BUFIOottt e e 40

BUFIO Primitive . . o vttt e ettt et et ettt et et ettt ee s 40
1310 51 (@ 8111 (o e £=1 - 41
Regional Clock Buffer-BUFR 41
BUFR Primitive. . . ottt et e et e et e et et et ettt 42
BUFR Attributes and Modes. oottt i et e e e e e 42
BUFR Use MoOdelS. . . .ottt ittt et e et et et et e et e 43
Regional Clock Nets i 45

VHDL and Verilog Templates................. 45

BUFGCTRL VHDL and Verilog Templates 45
VHDL Templateo 45
Verilog Template i 46
Declaring Constraints in UCFFile o i, 47

BUFG VHDL and Verilog Templates .. 47
VHDL Templateo 47
Verilog Template i i 48
Declaring Constraintsin UCFFile o i i, 48

BUFGCE and BUFGCE_1 VHDL and Verilog Templates 48
VHDL Templateot i 48
Verilog Template i i e 49

Virtex-4 FPGA User Guide www.xilinx.com

UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

SIXILINX®

Declaring Constraintsin UCFFile 49
BUFGMUX and BUFGMUX_1 VHDL and Verilog Templates................... 49
VHDL Template oo e 49
Verilog Templateo 50
Declaring Constraintsin UCFFile 50
BUFGMUX_VIRTEX4 VHDL and Verilog Templates 50
VHDL Templateo e 50
Verilog Templateo i 51
Declaring Constraintsin UCFFile 51
BUFIO VHDL and Verilog Templates 52
VHDL Templateo e 52
Verilog Template i 52
Declaring Constraints in UCFFile 52
BUFR VHDL and Verilog Templates .. 53
VHDL Templateo e 53
Verilog Template i 53
Declaring Constraintsin UCFFile 54

Chapter 2: Digital Clock Managers (DCMs)

DCM Summary 55
DCM Primitives. 57
DCM_BASE Primitive 58
DCM_PS Primitive. oo 58
DCM_ADV Primitive o 58
DCM Ports. ... 59
ClockInput Ports 59
Source Clock Input — CLKIN.ot e e 59
Feedback Clock Input —CLKFB i 59
Phase-Shift Clock Input —PSCLKo e 60
Dynamic Reconfiguration Clock Input —DCLK 60
Control and Data InputPorts......... 61
ResetInput — RSTo 61
Phase-Shift Increment/Decrement Input — PSINCDEC 61
Phase-Shift Enable Input —PSEN i, 61
Dynamic Reconfiguration Data Input — DI[15:0]. 61
Dynamic Reconfiguration Address Input — DADDR[6:0]....................... 61
Dynamic Reconfiguration Write Enable Input —DWE 62
Dynamic Reconfiguration Enable Input —DEN 62
ClockOutput Ports 62
IxOutput Clock —CLKOo oo e e 62

1x Output Clock, 90° Phase Shift —CLK90, 62

1x Output Clock, 180° Phase Shift — CLK180, 62

1x Output Clock, 270° Phase Shift —CLK270, 62

2x Output Clock — CLK2X. ... oo i 62

2x Output Clock, 180° Phase Shift — CLK2X180coiiiiiin.. 63
Frequency Divide Output Clock —CLKDV. 63
Frequency-Synthesis Output Clock —CLKEX............ 63
Frequency-Synthesis Output Clock, 180° — CLKEX180............. 63
Status and Data OutputPorts 63
Locked Output —LOCKEDo i 63
Phase-Shift Done Output —PSDONE 63
Status or Dynamic Reconfiguration Data Output —DO[15:0] 64

www.xilinx.com Virtex-4 FPGA User Guide

UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

SOXILINX®

Dynamic Reconfiguration Ready Output—DRDY 64

DCM Attributes. 65
CLK_FEEDBACK Attribute e 66
CLKDV_DIVIDE Attribute. e 67
CLKFX_MULTIPLY and CLKEX_DIVIDE Attributes 67
CLKIN_DIVIDE_BY_2 Attribute........ ... 67
CLKIN_PERIOD Attribute e 67
CLKOUT_PHASE_SHIFT Attribute 68
DCM_AUTOCALIBRATION Attribute 68
DCM_PERFORMANCE_MODE Attribute 68
DESKEW_ADJUST Attributeo e 69
DFS_FREQUENCY_MODE Attribute 69
DLL_FREQUENCY_MODE Attribute 69
DUTY_CYCLE_CORRECTION Attribute o ... 69
FACTORY_JF Attribute. e 69
PHASE_SHIFT Attribute e 69
STARTUP_WAIT Attribute o et 70
DCM Design Guidelines................ 70
Clock Deskew 70
Clock Deskew Operation, 70

Input Clock Requirements i 71

Input Clock Changes. it i 71

Output Clocks. . ..ot 72

DCM During Configurationand Startup i 72

Deskew Adjusto 73
Characteristics of the Deskew Circuit. oo, 74
Cascading DCMS . ..ot 74
Frequency Synthesis 75
Frequency Synthesis Operation 75
Frequency Synthesizer Characteristics 76

Phase Shifting 76
Phase-Shifting Operation i 76
Interaction of PSEN, PSINCDEC, PSCLK, and PSDONE, 79
Phase-Shift Overflow i i 80
Phase-Shift Characteristics i 80

Dynamic Reconfiguration........... i 81
Connecting DCMs to Other Clock Resources in Virtex-4 Devices............. 82
IBUFG to DCM . .. e e 82
DCM to BUFGCTRLo 82
BUFGCTRL to DCM . ..o e e 82
DCMto and from PMCD 82
Application Examples.......... 82
Standard Usage i 82
Board-Level Clock Generation.............. i i ... 83
Board Deskew with Internal Deskew o i it 85
Clock Switching Between Two DCMs, .. 88
VHDL and Verilog Templates, and the Clocking Wizard..................... 89
DCM T TimingModels 94
Reset/Lock ..o e 94
Fixed-Phase Shifting 95
Variable-Phase Shifting 95
Status Flags 96

Virtex-4 FPGA User Guide www.xilinx.com

UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

SIXILINX®

Legacy Support 97

Chapter 3: Phase-Matched Clock Dividers (PMCDs)

PMCD Summary........ ... 99
PMCD Primitives, Ports, and Attributes 101
PMCD Usage and Design Guidelines....................................... 102
Phase-Matched Divided Clockso i i 102
Matched Clock Phase i 102
Reset (RST) and Release (REL) Control Signals............................... 103
Connecting PMCD to other Clock Resources 105
IBUFGto PMCDo e e 105

DCMto PMCD 105
BUFGCTRLtoPMCD e 105

PMCD to BUFGCTRL.o e 106

PMCDto PMCD e e 106
Application Examples.......... 106
DCMandaSinglePMCD........... o i i i 106
DCMand Parallel PMCDs oo i i i 106
IBUFG, BUFG, and PMCD e 107
PMCD for Further Division of Clock Frequencies 108
VHDL and Verilog Templates, and the Clocking Wizard.................... 109
VHDL Template 111
Verilog Template 112

Chapter 4: Block RAM

Block RAM Summary i 115
Block RAM Introduction 116
Synchronous Dual-Port and Single-Port RAMs 116
Data FIoW . ..o 116
Read Operation 118
Write Operation 118
OperatingModes 118
WRITE_FIRST or Transparent Mode (Default). 118
READ_FIRST or READ-BEFORE-WRITEMode., 119
NO_CHANGEMOdE . ..ottt e e e et 119

Conflict AVOIdancettt e 119
Asynchronous Clockingot 119
Synchronous Clockingt i i 120
Additional Block RAM Features in Virtex-4 Devices 120
Optional Output Registers 120
Independent Read and Write Port Width Selection 121
Cascadable Block RAM 121
FIFO SUPPOTt . oottt e e e e 122
Byte-Wide WriteEnableo o oo 123
Block RAM Library Primitives 124
Block RAM Port Signals.......... 124
Clock - CLK[A | B] - .ottt e e 124
Enable - ENJA | Bl. ..ottt e e 124
Write Enable - WE[A | B]ottt e e 125
Register Enable - REGCE[A |B]o 125

10 www.xilinx.com Virtex-4 FPGA User Guide

UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

SOXILINX®

UGO070 (v2.6) December 1, 2008

Set/Reset - SSRIA |B] ..ot 125
Address Bus - ADDR[A |BI<14:#> ..ottt 125
Data-In Buses - DI[A | B]<#:0> & DIP[A |B]<#:0>t 125
Data-Out Buses - DO[A | B]<#:0> and DOP[A |B]<#:0>. ..., .. 126
Cascade - CASCADEIN[A | B] ..ot oii e e 126
Cascade - CASCADEOUTI[A |B] .o oo e 126
Inverting Control Pins. 126
GO R e i 126
UnusedInputs 126
Block RAM Address Mapping.oouiiiiiiiiiiiiiiiienn. 127
Block RAM Attributes 127
Content Initialization - INIT_XX. oot e e 127
Content Initialization - INITP_XXot e 128
Output Latches Initialization - INIT (INIT_A & INIT_B) 128
Output Latches Synchronous Set/Reset - SRVAL (SRVAL_A & SRVAL_B) 128
Optional Output Register On/Off Switch - DO[A |[B]_ REG 129
Clock Inversion at Output Register Switch - INVERT_CLK_DOIA |B]_REG 129
Extended Mode Address Determinant - RAM_EXTENSION_[A|B] 129
Read Width - READ_WIDTH_[A|B] ...t 129
Write Width - WRITE_WIDTH _[A|B] oo 129
Write Mode - WRITE_MODE [A |B]oooi e 129
Block RAM Location Constraintsoiitiininininiennn... 129
Block RAM Initialization in VHDL or Verilog Code 130
Block RAM VHDL and Verilog Templates. 130
RAMB16 VHDL Templateoo i 130
RAMBI6 Verilog Template...................o oo oo 134
Additional RAMB16 Primitive Design Considerations...................... 139
Data Parity Buses - DIP[A/B]and DOP[A/B] 139
Optional Output Registers 139
Independent Read and Write Port Width 139
RAMB16 Port Mapping DesignRules 139
Cascadable Block RAM e 140
Byte-Write Enable 140
Additional Block RAM Primitives.. 141
Instantiation of Additional Block RAM Primitives............................ 143
Block RAM Applications. 143
Creating Larger RAM Structures. 143
Block RAM Timing Model, 143
Block RAM Timing Parameters 144
Block RAM Timing Characteristics, 145
Clock EVent 1 . ..o e e e et e e e e e, 145

Clock EVent 2 . ..o e e e e e e e, 145

Clock EVent 4 . ..o e e e e e e e 146

Clock EVent 5 . ..ottt e e e e e e, 146

Block RAM Timing Model il 146
Built-in FIFO Support........ 147
EMPTY Latencyvvvttiti ittt e e 148
Top-Level View of FIFO Architecture....................................... 149
FIFO Primitive e 149
FIFO Port Descriptions........... 150

Virtex-4 FPGA User Guide www.xilinx.com 11

http://www.xilinx.com

SIXILINX®

FIFO Operations i, 151
ReSet . .o e 151
OperatingMode 151

Standard Mode oottt e e e 151
First Word Fall Through (FWFT)Mode 151
Status Flags i 151
Empty Flago 151
ALMOSTEMPTY Flag.ot e s 152
Read Error Flag. i 152
FullFlag oo 152
Write Error Flago 152
ALMOSTFULLFIAE . . o oottt e e e 152

FIFO Attributes 153
FIFO ALMOSTEMPTY / ALMOSTFULL Flag Offset Range 153

FIFO VHDL and Verilog Templates .. 154
FIFOVHDL Template.............o o i 154
FIFO Verilog Template i 155

FIFO Timing Models and Parameters....................................... 156
FIFO Timing Characteristics. o o oo L. 157

Case 1: Writing toan Empty FIFO o ... 158
Case 2: Writing to a Full or Almost FullFIFO. oo, 159
Case 3:Reading Froma FullFIFO 160
Case 4: Reading From an Empty or Almost Empty FIFO 162
Case5:Resetting AILFlagsoiii i i 163

FIFO Applications 164
Cascading FIFOs to Increase Depth 164
Cascading FIFOs to Increase Width 164

FIFO16 Error Condition and Work-Arounds 165
FIFO16 Exrror Conditionot et 165
Solution 1: Synchronous/Asynchronous Clock Work-Arounds 165

Synchronous Clock Work-Around oot 165
Asynchronous Clock Work-Around. oo 166
WRCLK Faster than RDCLK Design. 166
RDCLK Faster than WRCLK Design. 167
User-Programmable Flag Settings in the Composite FIFO 167
Status Flags.o ot 168
Resource UtIZation oo ottt i et et e et e e e 168
Performance Expressed in Maximum Read and/or Write Clock Frequency 168
CORE Generator Tool Implementation. i, 168
Software Updatest 169
SOftWaAre IP COTeS . . o vt ettt et e e 169
Solution 2: Work-Around Using a Third Fast Clock 170
Design Descriptiono vt 170
0] <Y 172
Timing Diagramot 172
Resource UtiZation oo ottt i et e ettt et et e e e 173
PerfOrmanCe . . v v vttt ettt ettt e e e 173
Design Files.ot 173
Solution 3: FIFO Flag Generator Using Gray Code............................ 174
Design Descriptiono vt 174
0] <Y 176
Resource UtiZation oo vttt i et ettt et e 176
www.xilinx.com Virtex-4 FPGA User Guide

UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

SOXILINX®

PerfOrmanceo vttt ettt e e e e e 176
Design Files. oot 177
Solution Summary 177
Built-in Block RAM Error CorrectionCode 178
Top-Level View of the Block RAM ECC Architecture 178
Block RAM ECC Primitivet e et e 179
Block RAM ECC Port Description..................oo oo oo 179
Error Status Description 180
Block RAM ECC Attribute e 180
Block RAM ECC VHDL and Verilog Templates.............................. 180
Block RAMECC VHDL Templateottt 180
Block RAM ECC Verilog Template., 181

Chapter 5: Configurable Logic Blocks (CLBs)

CLB OVerView 183
Slice Description. 184
CLB/Slice Configurations.oouvtin i 184
Look-Up Table (LUT)ot e e 187
Storage Elements. i 187
Distributed RAM and Memory (Available in SLICEM only) 188
Read Only Memory (ROM). oot e 191
Shift Registers (Available in SLICEMonly), 192
Shift Register Data Flow i 195
MultipleXers 196
Designing Large Multiplexers. 198
Fast Lookahead Carry LOgic. oo oov i i 202
ArithmeticLogic. i 204
CLB/Slice TimingModels............ i 204
General Slice Timing Model and Parameters 205
Timing Parametersot 205
Timing Characteristicst 207

Slice Distributed RAM Timing Model and Parameters
(Available in SLICEM only)o 208
Distributed RAM Timing Parameters.ooiiiiiiiinnn.... 209
Distributed RAM Timing Characteristics 209
Slice SRL Timing Model and Parameters (Available in SLICEM only) 211
Slice SRL Timing Parameterso i, 212
Slice SRL Timing Characteristics. i 212
Slice Carry-Chain Timing Model and Parameters 213
Slice Carry-Chain Timing Parameters. i, 215
Slice Carry-Chain Timing Characteristics., 215
CLB Primitives and Verilog/VHDL Examples............................... 216
Distributed RAM Primitives i 216
VHDL and Verilog Instantiations 217
PortSignals 217
Clock - WCLK . . .o e 217
Enable - WE 217
Address- A0, A1, A2, A3 (A4, AD) . ..o 217
DataIn-D. 217
Data Out-O,SPO,and DPO ettt e et e e 217
Inverting Control Pins i 217
Global Set/Reset - GSR. . . .ottt e 217

Virtex-4 FPGA User Guide www.xilinx.com 13

UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

SIXILINX®

AT DULES. . . . 218
Content Initialization - INITo i e et et 218
Inijtialization in VHDL or VerilogCodeso, 218
Location ConStraints. . ..o oottt ettt ettt ettt ettt e e s 218
Creating Larger RAM Structurest 219
VHDL and Verilog Templateso i, 219

Shift Registers (SRLs) Primitives and Verilog/VHDL Example.............. 221

SRL Primitives and Submodules i 221

Initialization in VHDL or VerilogCode o oot 223

PortSignals 223
Clock - CLK. ottt et e e e e e e e e e e 223
Dataln- e e e e 223
Clock Enable - CE (optional). 223
Address - A0, A1, A2, A3 ..ottt e 223
Data Out - Q . ettt e e 223
Data Out-Q15 (optional) 223
Inverting Control Pins i 223
Global Set/Reset - GSR. . . .ottt e 223

AribULes. . . . e 224
Content Initialization - INIT ettt e e e 224

Location Constraintsoiiii i it et e 224

Fully Synchronous Shift Registers............. 225

Static-Length Shift Registers. il 225

VHDL and Verilog Instantiation L 226
VHDL and Verilog Templates 226

Multiplexer Primitives and Verilog/VHDL Examples 227

Multiplexer Primitives and Submodules 228

PortSignals 228
DataIn - DAT A L. .. e e e e e e e e e 228
Control In-SELECT I ...ttt e e et et e e et e e et 228
Data Out - DAT A _O ..ttt e e e e e e e e e e e e e 229

Multiplexer Verilog/VHDL Examples................... 229
VHDL and Verilog Instantiation. i i 229
VHDL and Verilog Submodules. i 229

Chapter 6: SelectlO Resources

I/OTile Overview. i 233
SelectlO Resources Introduction 234
SelectIO Technology Resources General Guidelines........................ 234
Virtex-4 FPGA I/OBank Rules i 235
B3VI/OSUPPOIt oot 235

Reference Voltage (VRgp) Pins o 235

Output Drive Source Voltage (Veco) Pins oo 235

Virtex-4 FPGA Digitally Controlled Impedance (DCI) 236
Introduction 236

XINX DCIL. . .o e e e 236
Controlled Impedance Driver (Source Termination) 237
Controlled Impedance Driver with Half Impedance (Source Termination) 237

Input Termination to VCCO (Single Termination) 238

Input Termination to VCCO /2 (Split Termination) 239

Driver with Termination to Vg (Single Termination) 240

Driver with Termination to Vocg /2 (Split Termination) 241

www.xilinx.com Virtex-4 FPGA User Guide

UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

SOXILINX®

DCIin Virtex-4 FPGA Hardware. ot 241
DCIUsage Examplest 243
Virtex-4 FPGA SelectlO Primitives i, 246
IBUF and IBUFGt e e et e et 247
OBUE . . e 247
OBU T . .ot e e e e 247
IOBUE .. 248
IBUFDS and IBUFGDS o et 248
OBUEFDS . ..ot 248
OBUFTDS . .ot e e e e e e e 249
IOBUEDS . . .ot e e 249
Virtex-4 FPGA SelectlO Attributes/Constraints.cooviiineoon... 249
Location ConStraints.ottt vttt e ettt ettt e 249
IOStandard Attribute oo e 250
Output Slew Rate Attributes. 250
Output Drive Strength Attributes. i i 250
Lower Capacitance /O Attributes i i 250
PULLUP/PULLDOWN/KEEPER for IBUF, OBUFT, and IOBUF 251
Differential Termination Attribute 251
Virtex-4 FPGA I/O Resource VHDL/Verilog Examples....................... 251
VHDL Template e i 251
Verilog Template i 252
Specific Guidelines for Virtex-4 FPGA 1/O Supported Standards............ 253
LVTTL (Low Voltage Transistor-Transistor Logic) 253
LVCMOS (Low Voltage Complementary Metal Oxide Semiconductor).......... 255
LVDCI (Low Voltage Digitally Controlled Impedance) 257

LV D DV . L e e 258
HSLVDCI (High-Speed Low Voltage Digitally Controlled Impedance). 259
PCIX, PCI33, PCI66 (Peripheral Component Interface) 260
GTL (Gunning Transceiver Logic)................... 261
GTL_DCIUSAZE .« - o ottt et ettt e e 261
GTLP (Gunning Transceiver LogicPlus) 262
GTLP_DCIUSAZE -+« v vttt e ettt ittt it i 262
HSTL (High-Speed Transceiver Logic).......................... 263
HSTL_I,HSTL_II, HSTL_I1 18, HSTL_III 18Usagecccvvvuiuinenon.. 263
HSTL_1_DCI, HSTL_II_DCI HSTL_1 DCI_18, HSTL_III_DCI_18 Usage 263
HSTL_1II, HSTL_IV,HSTL_II_18 HSTL_IV_18Usage.......... ..., 264
HSTL_II_DCI, HSTL_IV_DCI, HSTL_II_DCI_18, HSTL_IV_DCI_18 Usage. 264
DIFF_HSTL_IL, DIFF_HSTL IT 18 e et e e 264
DIFF_HSTL_II_ DCI, DIFF_HSTL_IIL. DCIL_18 oot 264
HSTL Class I . ..ot e e e e e e e 265
HSTL Class IT . .. oot e e e e e e e 266
Complementary Single-Ended (CSE) Differential HSTL ClassII................ 268
HSTL Class IIL. oottt e e e e e e e e e e e 270
HSTL Class IV . .o o e e e e e e e e 271
HSTL Class I (1.8V) .o v ittt e e e e e e 273
HSTL Class IT (1.8V) . . . vttt e e e e e e e e 274
Complementary Single-Ended (CSE) Differential HSTL Class II (1.8V) 276
HSTL Class IIL (1.8V) . . oottt e e e e e e e e e 278
HSTL Class IV (1.8V) . . oottt e e e e e e e 279
SSTL (Stub-Series Terminated Logic)o L. 281
SSTL2_I, SSTLI8 T USAE .« o v v vo it it 281
SSTL2_ I DCL SSTL18_ I DCIUSage. . . oo vt i i 281

Virtex-4 FPGA User Guide www.xilinx.com

UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

SIXILINX®

SSTL2 II, SSTLI8 ITUSage .« v v vt e e ettt e 281
SSTL2_I1_DCI, SSTL18_II DCIUSsage. . .« oot ie i 281
DIFF_SSTL2_II, DIFF_SSTL18_IIUsageo vvi i 282
DIFF_SSTL2_II_DCI, DIFF_SSTL18_II_ DCIUsage...........ccoviiuininnon.. 282
SSTL2 Class I (2.5V) . oot e e e 282
SSTL2 Class IL (2.5V) . vttt e e e e e e e e e 283
Complementary Single-Ended (CSE) Differential SSTL2 Class II (2.5V).......... 285
SSTLI8 Class I (1.8V) . vttt e e e e e e e 288
SSTLI8 Class IL (1.8V) .o\ttt e e e e e e e e e 289
Complementary Single-Ended (CSE) Differential SSTL Class II (1.8V)........... 291
Differential Termination: DIFF_TERM Attribute 294
LVDS and Extended LVDS (Low Voltage Differential Signaling) 294
Transmitter Termination. v ottt ittt et e i 295
Receiver Terminationo.v ittt ittt ettt ettt et e et 295
HyperTransport Protocol (LDT)o o i i it 296
BLVDS (BUus LVDS) . ..ottt e e e e e 297
CSE Differential LVPECL (Low-Voltage Positive Emitter-Coupled Logic) 297
LVPECL Transceiver Terminationuttiuutennneennnnennnneennns 297

I/0 Standards Compatibility 299
I/O Standards Special Design Rules .. 302
Rules for Combining I/O Standards in the Same Bank 302
3.3VI/ODesign Guidelines L 303
I/O Standard Design Rules. i 303
Mixing Techniques 306
SUMMATY ..ottt e e e 306
Simultaneous Switching Output Limits 306
Sparse-Chevron Packages............... L 306
Nominal PCB Specifications. il 307
PCB Construction . . . vt vttt ittt ittt et e e 307
Signal Return Current Management., 307

Load Traces. . v vttt et e e e e e 307
Power Distribution System Design. i il 307
Nominal SSO Limit Table: Sparse Chevron.................................. 308
Equivalent Vcco/GND Pairs: Sparse Chevron, 309
Nominal SSO Limit Tables: Non-Sparse Chevron 310
Equivalent Vco/GND Pairs: Non-Sparse Chevron 314
Actual SSO Limits versus Nominal SSO Limits 314
Electrical Basis Of SSONOISEiitii ettt 314
Parasitic Factors Derating Method (PFDM)................. 315
Weighted Average Calculationof SSO......... oo L 316
Calculation of Full Device SSO i e 317
Full Device SSOExample i 317

Full Device SSO Calculator.t e e 319
Other SSO Assumptions i 319
LVDCI and HSLVDCIDIIVEIS . . oot e et et e e e e i ittt e e e e e 319
Bank 0. ..ot e 320

Chapter 7: SelectlO Logic Resources

Introduction 321

ILOGIC RESOULCESottt et e 321

Combinatorial InputPath............ oo 323

Input DDR Overview (IDDR) 323
www.Xxilinx.com Virtex-4 FPGA User Guide

UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

SOXILINX®

OPPOSITE_EDGE Mode.ttt e e e et 323
SAME _EDGEMOdE . . .ot e e e e 325
SAME_EDGE_PIPELINED Mode.ottt e e 326
Input DDR Primitive IDDR) o 327
IDDR VHDL and Verilog Templates 328
IDDRVHDL Templateot 328
IDDR Verilog Template 328
ILOGIC Timing Models i 329
ILOGIC Timing Characteristics i, 329
ILOGIC Timing Characteristics, DDR. i 330
Input Delay Element (IDELAY)............... o i i i 331
IDELAY Primitive.ot e e e et e e 332
IDELAY POrtS .« . v v vttt ettt e e e e e e e e e et e e e e 333
IDELAY AHEibUtes . . . o oottt e e e e 334
IDELAY TIMING . .o oottt et e 334

Note on Instability after an Increment/Decrement Operation 335
IDELAY VHDL and Verilog Instantiation Template 336
IDELAYCTRL OVEIVIEW . .ottt ettt e e e e e e e e 341
IDELAYCTRL Primitive oo ot et e et e e 341
IDELAYCTRL POItS . . o oo ettt et e e e e e e et e e et 341
IDELAYCTRL Timing.o oottt e e 342
IDELAYCTRL LOCAHONS. « « v vt ettt et ettt et e e e et e e e 343
IDELAYCTRL Usage and Design Guidelines. o ion... 343
OLOGIC RESOUICESot as 351
Combinatorial Output Data and 3-State Control Path 354
Output DDR Overview (ODDR)o 354
OPPOSITE_EDGE MOdE. . . . o ittt ettt e e et e et e et e et 354
SAME_EDGE MOAE . . .ot o ettt e e e e e e e 356
Clock Forwarding. i i 356
Output DDR Primitive (ODDR). oo oo i 357
ODDR VHDL and Verilog Templates 358
ODDR VHDL Templateo i 358
ODDR Verilog Template. i 358
OLOGIC Timing Models. i 359
Timing Characteristics i 360

Chapter 8: Advanced SelectlO Logic Resources

Introduction e 365
Input Serial-to-Parallel Logic Resources (ISERDES)......................... 365
ISERDES Primitive. . ..ottt et e et e e et e e 367
ISERDES PoOrts . .ottt e e e e 368
Combinatorial Output—O 368
Registered Outputs —Q1to Q6. oo 368

Bitslip Operation —BITSLIP i 368

Clock Enable Inputs —-CE1and CE2.......... 369
High-Speed Clock Input —CLK i 369

Divided Clock Input —CLKDIV e 370

Serial Input Data from IOB-D......... i 370
High-Speed Clock for Strobe-Based Memory Interfaces-OCLK. 370
ResetInput —SRo 370

ISERDES Attributesot e e 372
BITSLIP_ENABLE Attribute.o e e ettt 372

Virtex-4 FPGA User Guide www.xilinx.com 17

UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

SIXILINX®

DATA_RATE Attribute.o i e e e et e e 372
DATA_WIDTH Attributeo e e ettt 372
INTERFACE_TYPE Attribute. e e 373
IOBDELAY Attribute oottt et e e e e 374
NUM_CE Attribute.ot e e e e e et et e 374
SERDES_MODE Attributeo oot e e e et 374
ISERDES Clocking Methods. 374
ISERDES Width Expansion o o i i 375
Guidelines for Expanding the Serial-to-Parallel Converter Bit Width 376
Verilog Instantiation Template to use Width Expansion Feature................. 376
ISERDES Latencies. oottt et it et et et et it et et et 379
ISERDES Timing Model and Parameters 379
Timing Characteristics 380
ISERDES VHDL and Verilog Instantiation Template. 380
ISERDES VHDL Instantiation.o v vttt ittt it e it ii e eeieeenns 380
ISERDES Verilog Instantiation i i, 382
BITSLIP Submodule. e et e 383
Bitslip Operation.t 383
Bitslip Timing Model and Parameters oiiian... 384
Output Parallel-to-Serial Logic Resources (OSERDES)...................... 386
Data Parallel-to-Serial Converteruuiiiiiiiiiiieeeeennnnnnnn 386
3-State Parallel-to-Serial CoNversion.uuiiiiiiiiiie e 387
OSERDES Primitive oo ittt et et et ettt e 388
OSERDES POrts 388
Data Path Output—OQ. 389
3-state Control Output—TQ 389
High-Speed Clock Input —CLK i 389
Divided ClockInput—CLKDIV i 389
Parallel Data Inputs —D1toD6. i 389
Output Data Clock Enable—OCE. i 389
Parallel 3-State Inputs —T1toT4. i 389
3-State Signal Clock Enable—TCE 390
ResetInput—SR o 390
OSERDES Attributeso 391
DATA_RATE_OQ Attribute.o oot ettt et e e e 391
DATA_RATE_TQAttribute oo ettt e e e e 392
DATA_WIDTH Attribute oo oo ettt et e e e 392
SERDES_MODE Attribute ettt e et e 392
TRISTATE_WIDTH Attribute.ot i et e e e e e 392
OSERDES Width Expansion. o oo o i oo 392
Guidelines for Expanding the Parallel-to-Serial Converter Bit Width 393
OSERDES Latencies . . . oo vo ittt et et et et et et et e 394
OSERDES Timing Model and Parameters 394
Timing Characteristics of 2:1 SDR Serialization 395
Timing Characteristics of 8:1 DDR Serialization. 395
Timing Characteristics of 4:1 DDR 3-State Controller Serialization 396
OSERDES VHDL and Verilog Instantiation Templates........................ 398
OSERDES VHDL Template. o i 398
OSERDES Verilog Template 399

Chapter 9: Temperature Sensing Diode

Temperature-Sensing Diode (TDP/TDN), 401
Temperature Sensor Examples............ o il 401
www.xilinx.com Virtex-4 FPGA User Guide

UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

SOXILINX®

Maxim Remote/Local Temperature Sensors
Texas Instruments Remote /Local Temperature Sensor
National Semiconductor (LM83 or LM86)

Virtex-4 FPGA User Guide www.Xxilinx.com
UGO070 (v2.6) December 1, 2008

19

http://www.xilinx.com

SIXILINX®

20

www.Xxilinx.com

Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

S XILINX®

Preface

About This Guide

This document describes the Virtex®-4 FPGA architecture. Complete and up-to-date
documentation of the Virtex-4 family of FPGAs is available on the Xilinx® website at
http:/ /www.xilinx.com/ virtex4.

Guide Contents

Chapter 1, “Clock Resources”

Chapter 2, “Digital Clock Managers (DCMs)”
Chapter 3, “Phase-Matched Clock Dividers (PMCDs)”
Chapter 4, “Block RAM”

Chapter 5, “Configurable Logic Blocks (CLBs)”
Chapter 6, “SelectlO Resources”

Chapter 7, “SelectlO Logic Resources”

Chapter 8, “Advanced SelectlO Logic Resources”
Chapter 9, “Temperature Sensing Diode”

Additional Documentation

The following documents are also available for download at
http:/ /www.xilinx.com/ virtex4.

DS112, Virtex-4 Family Overview

The features and product selection of the Virtex-4 family are outlined in this overview.

DS302, Virtex-4 Data Sheet: DC and Switching Characteristics

This data sheet contains the DC and Switching Characteristic specifications for the
Virtex-4 family.

UGO073, XtremeDSP for Virtex-4 FPGAs User Guide

This guide describes the XtremeDSP™ slice and includes reference designs for using
DSP48 math functions and various FIR filters.

UG071, Virtex-4 Configuration Guide

This all-encompassing configuration guide includes chapters on configuration
interfaces (serial and SelectMAP), bitstream encryption, Boundary-Scan and JTAG
configuration, reconfiguration techniques, and readback through the SelectMAP and
JTAG interfaces.

Virtex-4 FPGA User Guide

www.Xxilinx.com 21

UGO070 (v2.6) December 1, 2008

http://www.xilinx.com/products/silicon_solutions/fpgas/virtex/virtex4/index.htm
http://www.xilinx.com/products/silicon_solutions/fpgas/virtex/virtex4/index.htm
http://www.xilinx.com/support/documentation/data_sheets/ds112.pdf
http://www.xilinx.com
http://www.xilinx.com/support/documentation/data_sheets/ds302.pdf
http://www.xilinx.com/support/documentation/user_guides/ug073.pdf
http://www.xilinx.com/support/documentation/user_guides/ug071.pdf

Preface: About This Guide

SIXILINX®

UG072, Virtex-4 PCB Designer’s Guide

This guide describes PCB guidelines for the Virtex-4 family. It covers SelectlO™
signaling, Rocket]O™ signaling, power distribution systems, PCB breakout, and parts
placement.

UGO075, Virtex-4 Packaging and Pinout Specification

This specification includes the tables for device/package combinations and maximum
I/0s, pin definitions, pinout tables, pinout diagrams, mechanical drawings, and
thermal specifications.

UGO076, Virtex-4 RocketIO Multi-Gigabit Transceiver User Guide

This guide describes the RocketlO Multi-Gigabit Transceivers available in the
Virtex-4 FX family.

UGO074, Virtex-4 FPGA Embedded Tri-Mode Ethernet MAC User Guide

This guide describes the Tri-mode Ethernet Media Access Controller available in the
Virtex-4 FX family.

o UGO018, PowerPC 405 Processor Block Reference Guide
This guide describes the IBM PowerPC® 405 processor block available in the

Virtex-4 FX family.

Additional Support Resources

To search the database of silicon and software questions and answers, or to create a
technical support case in WebCase, see the Xilinx website at:
http:/ /www.xilinx.com/support.

Conventions
This document uses the following conventions. An example illustrates each convention.
Typographical
The following typographical conventions are used in this document:
Convention Meaning or Use Example
Messages, prompts, and
Courier font program files that the system speed grade: - 100
displays
Courier bold .L1teral Commands that you enter ngdbuild design_name
in a syntactical statement
Commands that you select from File - Open
Helvetica bold amenu
Keyboard shortcuts Ctrl+C
22 www.xilinx.com Virtex-4 FPGA User Guide

UGO070 (v2.6) December 1, 2008

http://www.xilinx.com
http://www.xilinx.com/support/mysupport.htm
http://www.xilinx.com/support/documentation/user_guides/ug072.pdf
http://www.xilinx.com/support/documentation/user_guides/ug075.pdf
http://www.xilinx.com/support/documentation/user_guides/ug076.pdf
http://www.xilinx.com/support/documentation/user_guides/ug074.pdf
http://www.xilinx.com/support/documentation/user_guides/ug018.pdf

SOXILINX®

Conventions

Convention

Meaning or Use

Example

Italic font

Variables in a syntax statement
for which you must supply
values

ngdbuild design_name

References to other manuals

See the Development System
Reference Guide for more
information.

Emphasis in text

If a wire is drawn so that it
overlaps the pin of a symbol, the
two nets are not connected.

Square brackets []

An optional entry or parameter.
However, in bus specifications,
such asbus[7:0], they are
required.

ngdbuild [option_name]
design_name

Braces { }

A list of items from which you
must choose one or more

lowpwr ={on|off}

Vertical bar |

Separates items in a list of
choices

lowpwr ={on|off}

Vertical ellipsis

Repetitive material that has
been omitted

I0B #1:
IOB #2:

Name
Name

QOouT’
CLKIN'

Horizontal ellipsis ...

Repetitive material that has
been omitted

allow block block_name locl
loc2 ... locn;

Online Document

The following conventions are used in this document:

Convention Meaning or Use Example
See the section “Additional
Cross-reference link to alocation | Resources” for details.
Blue text . . .
in the current document Refer to “Title Formats” in
Chapter 1 for details.
Cross-referencelink toalocation | See Figure 5 in the Virtex-II
Red text

in another document

Platform FPGA User Guide.

Blue, underlined text

Hyperlink to a website (URL)

Go to http:/ /www.xilinx.com
for the latest speed files.

Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

www.Xxilinx.com

23

http://www.xilinx.com

Preface: About This Guide

SIXILINX®

24

www.Xxilinx.com

Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

S XILINX®
Chapter 1

Clock Resources

Global and Regional Clocks

For clocking purposes, each Virtex®-4 device is divided into regions. The number of
regions varies with device size, eight regions in the smallest device to 24 regions in the
largest one.

Global Clocks

Each Virtex-4 device has 32 matched-skew global clock lines that can clock all sequential
resources on the whole device (CLB, block RAM, DCMs, and 1/0), and also drive logic
signals. Any eight of these 32 global clock lines can be used in any region. Global clock
lines are only driven by a global clock buffer, and can also be used as a clock enable circuit
or a glitch-free multiplexer. It can select between two clock sources, and can also switch
away from a failed clock source, a new feature in the Virtex-4 architecture.

A global clock buffer is often driven by a Digital Clock Manager (DCM) to eliminate the
clock distribution delay, or to adjust its delay relative to another clock. There are more
global clocks than DCMs, but a DCM often drives more than one global clock.

Regional Clocks and I/O Clocks

Each region has two “clock capable” regional clock inputs. Each input can differentially or
single-endedly drive regional clocks and I/O clocks in the same region, and also in the
region above or below (i.e., in up to three adjacent regions).

The regional clock buffer can be programmed to divide the incoming clock rate by any
integer number from 1 to 8. This feature, in conjunction with the programmable
serializer /deserializer in the IOB (see Chapter 8, “Advanced SelectlO Logic Resources”)
allows source-synchronous systems to cross clock domains without using additional logic
resources.

A third type of clocking resource, I/O clocks, are very fast and serve localized 1/O
serializer /deserializer circuits (see Chapter 8, “Advanced SelectIO Logic Resources”).

For more detail on how to identify clock regions and the associated components, please use
the PACE tool.

Global Clocking Resources

Global clocks are a dedicated network of interconnect specifically designed to reach all
clock inputs to the various resources in an FPGA. These networks are designed to have low
skew and low duty cycle distortion, low power, and increased jitter tolerance. They are
also designed to support very high frequency signals.

Virtex-4 FPGA User Guide www.Xxilinx.com 25
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 1: Clock Resources i:)("JNX®

Understanding the signal path for a global clock expands the understanding of the various
global clock resources. The global clocking resources and network consist of the following
paths and components:

e Global Clock Inputs

e Global Clock Buffers

e Clock Tree and Nets - GCLK

e Clock Regions

Global Clock Inputs

Virtex-4 FPGAs contain specialized global clock input locations for use as regular user
I/0Os if not used as clock inputs. The number of clock inputs varies with the device size.
Smaller devices contain 16 clock inputs, while larger devices have 32 clock inputs.

Table 1-1 summarizes the number of clock inputs available for different Virtex-4 devices.

Table 1-1: Number of Clock I/O Inputs by Device
Device Number of Clock I/O Inputs

XC4VLX15, XC4VLX25 16
XC4VSX25, XC4VSX35
XC4VFX12, XC4VFX20, XC4VFX40, XC4VEFX60

XC4VLX40M, XC4VLX60M, XC4VLX80, XC4VLX100, 32
XC4VLX160, XC4VLX200
XC4VSX55

XC4VEX100®), XC4VEX140

Notes:
1. The XC4VLX40 and XC4VLX60 in the FF668 package only have 16 clock input pins.
2. The XC4VFX100 in the FF1152 package only has 16 clock input pins.

Clock inputs can be configured for any I/O standard, including differential I/ O standards.
Each clock input can be either single-ended or differential. All 16 or 32 clock inputs can be
differential if desired. When used as outputs, global clock input pins can be configured for
any output standard except LVDS and HT output differential standards. Each global clock
input pin supports any single-ended output standard or any CSE output differential
standard.

Global Clock Input Buffer Primitives

The primitives in Table 1-2 are different configurations of the input clock I/O input buffer.

Table 1-2: Clock Buffer Primitives

Primitive Input | Output Description
IBUFG I @) Input clock buffer for single-ended I/0O
IBUFGDS I, 1B O Input clock buffer for differential I/O

These two primitives work in conjunction with the Virtex-4 FPGA 1/0 resource by setting
the IOSTANDARD attribute to the desired standard. Refer to Chapter 6, “I/O
Compeatibility” Table 6-38 for a complete list of possible I/O standards.

26

www.Xxilinx.com Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

2:)(||_|NX® Global Clocking Resources

Power Savings by Disabling Global Clock Buffer

The Virtex-4 FPGA clock architecture provides a straightforward means of implementing
clock gating for the purposes of powering down portions of a design.

Most designs contain several unused BUFGMUX resources. A clock can drive multiple
BUFGMUX inputs, and the BUFGMUX outputs, which will be synchronous with each
other, can be used to drive distinct regions of logic. For example, if all the logic required to
be always operating can be constrained to a few clocking regions, then one of the
BUFGMUX outputs can be used to drive those regions. Toggling the enable of the other
BUFGMUX then provides a simple means of stopping all dynamic power consumption in
those regions of logic available for power savings.

The XPower tool can be used to estimate the power savings from such an approach. The
difference can be calculated either by toggling the BUFGMUX enable or by setting the
frequency on the corresponding clock net to 0 MHz.

Global Clock Buffers

There are 32 global clock buffers in every Virtex-4 device. Each half of the die (top /bottom)
contains 16 global clock buffers. A global clock input can directly connect from the P-side
of the differential input pin pair to any global clock buffer input in the same half, either top
or bottom, of the device. Each differential global clock pin pair can connect to either a
differential or single-ended clock on the PCB. If using a single-ended clock, then the P-side
of the pin pair must be used because a direct connection only exists on this pin. For pin
naming conventions, refer to the Virtex-4 Packaging and Pinout Specification. A single-ended
clock connected to the N-side of the differential pair results in a local route and creates
additional delay. If a single-ended clock is connected to a differential pin pair then the
other side (N-side typically) can not be used as another single-ended clock pin. However,
it can be used as a user I/0. A device with 16 global clock pins can be connected to 16
differential or 16 single-ended board clocks. A device with 32 global clock pins can be
connected to 32 clocks under these same conditions.

Global clock buffers allow various clock/signal sources to access the global clock trees and
nets. The possible sources for input to the global clock buffers include:

e Global clock inputs

e Digital Clock Manager (DCM) outputs

e Phase-Matched Clock Divider (PMCD) outputs

¢ Rocket IO Multi-Gigabit Transceivers

e Other global clock buffer outputs

¢ General interconnect

The global clock buffers can only be driven by sources in the same half of the die
(top/bottom).

All global clock buffers can drive all clock regions in Virtex-4 devices. The
primary/secondary rules from Virtex-1I and Virtex-II Pro FPGAs do not apply. However,
only eight different clocks can be driven in a single clock region. A clock region (16 CLBs)
is a branch of the clock tree consisting of eight CLB rows up and eight CLB rows down. A
clock region only spans halfway across the device.

The clock buffers are designed to be configured as a synchronous or asynchronous “glitch
free” 2:1 multiplexer with two clock inputs. Virtex-4 devices have more control pins to
provide a wider range of functionality and more robust input switching. The following

Virtex-4 FPGA User Guide www.Xxilinx.com 27
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 1: Clock Resources

SIXILINX®

subsections detail the various configurations, primitives, and use models of the Virtex-4

FPGA clock buffers.

Global Clock Buffer Primitives

The primitives in Table 1-3 are different configurations of the global clock buffers.

Table 1-3: Global Clock Buffer Primitives

Primitive Input | Output Control
BUFGCTRL 10, 11 O CEO, CE1, IGNOREQO, IGNORE], S0, S1
BUFG I O -

BUFGCE I o CE
BUFGCE_1 I O CE
BUFGMUX 10,11 o S
BUFGMUX_1 10,11 O S
BUFGMUX_VIRTEX4 10,11 O S

Notes:

1. All primitives are derived from a software preset of BUFGCTRL.

BUFGCTRL

The BUFGCTRL primitive shown in Figure 1-1, can switch between two asynchronous
clocks. All other global clock buffer primitives are derived from certain configurations of
BUFGCTRL. The ISE® software tools manage the configuration of all these primitives.

BUFGCTRL has four select lines, SO, S1, CE0Q, and CE1. It also has two additional control
lines, IGNOREO and IGNORE1. These six control lines are used to control the input 10 and

I1.

Figure 1-1:

BUFGCTRL
IGNORET
CE1
St
1
N o)
10 /:

CEO

IGNOREO

UG070_1_01_031208

BUFGCTRL Primitive

BUFGCTRL is designed to switch between two clock inputs without the possibility of a
glitch. When the presently selected clock transitions from High to Low after SO and S1

28

www.Xxilinx.com

Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

SOXILINX®

Global Clocking Resources

change, the output is kept Low until the other (“to-be-selected”) clock has transitioned
from High to Low. Then the new clock starts driving the output.The default configuration
for BUFGCTRL is falling edge sensitive and held at Low prior to the input switching.
BUFGCTRL can also be rising edge sensitive and held at High prior to the input switching.

In some applications the conditions previously described are not desirable. Asserting the
IGNORE pins bypasses the BUFGCTRL from detecting the conditions for switching
between two clock inputs. In other words, asserting IGNORE causes the mux to switch the
inputs at the instant the select pin changes. IGNOREO causes the output to switch away
from the I0 input immediately when the select pin changes, while IGNOREL1 causes the
output to switch away from the I1 input immediately when the select pin changes.

Selection of an input clock requires a “select” pair (S0 and CEO, or S1 and CE1) to be
asserted High. If either S or CE is not asserted High, the desired input is not selected. In
normal operation, both S and CE pairs (all four select lines) are not expected to be asserted
High simultaneously. Typically only one pin of a “select” pair is used as a select line, while
the other pin is tied High. The truth table is shown in Table 1-4.

Table 1-4: Truth Table for Clock Resources

CEO S0 CE1 S o
1 1 0 X I0
1 1 X 0 I0
0 X 1 1 n
X 0 1 1 nn
1 1 1 Old Input
Notes:

1. Old input refers to the valid input clock before this state is achieved.
2. For all other states, the output becomes the value of INIT_OUT and does not toggle.

Although both S and CE are used to select a desired output, each one of these pins behaves
slightly different. When using CE to switch clocks, the change in clock selection can be
faster than when using S. Violation in setup /hold times of the CE pins causes a glitch at the
clock output. On the other hand, using the S pins allows the user to switch between the two
clock inputs without regard to setup/hold times. It does not result in a glitch. See the
discussion of “BUFGMUX_VIRTEX4”. The CE pin is designed to allow backward
compatibility from Virtex-II and Virtex-1I Pro FPGAs.

Virtex-4 FPGA User Guide www.Xxilinx.com 29
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 1: Clock Resources 2:)(||_|NX®

The timing diagram in Figure 1-2 illustrates various clock switching conditions using the
BUFGCTRL primitives. Exact timing numbers are best found using the speed specification.

0_J L]

|
—_———— | [_— I |
n___ T kil T e I O T
I |
—l :<— Teccek_ce : : | |
CEO L. | | l | |
| | | | | |
| | | | | |
CE1 [| | | [!
| I | | | |
| | | | | |
S0 L. | l | | |
| | | | | |
| | | | | |
St [| | | | |
| : | | : |
IGNOREO | | | | L
| | | | | |
| | | | | |
IGNORE1 | | | | | |
Teceko_o | Teccko_o | : Teccko_o
g i — — — =
o} _|_|_1_|_=_|_1_|' 'IL _____ I
A [AN [LA
at 10 Begin 11 Begin 10 UGO070_1_02_072907

Figure 1-2: BUFGCTRL Timing Diagram

e Before time event 1, output O uses input I0.

e Attime Tpccck cp before the rising edge at time event 1, both CE0 and SO are
deasserted Low. At about the same time, both CE1 and S1 are asserted High.

e Attime Tpccko o after time event 3, output O uses input I1. This occurs after a High
to Low transition of 10 (event 2) followed by a High to Low transition of I1.

e At time event 4, IGNORE] is asserted.

e Attime event 5, CEO and SO are asserted High while CE1 and S1 are deasserted Low.
At Tgccko oy after time event 6, output O has switched from I1 to 10 without
requiring a High to Low transition of I1.

Other capabilities of BUFGCTRL are:

e Pre-selection of the I0 and I1 inputs are made after configuration but before device
operation.

e The initial output after configuration can be selected as either High or Low.

e Clock selection using CEQ and CE1 only (S0 and S1 tied High) can change the clock
selection without waiting for a High to Low transition on the previously selected
clock.

30 www.Xxilinx.com Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

2:)(||_|NX® Global Clocking Resources

Table 1-5 summarizes the attributes for the BUFGCTRL primitive.

Table 1-5: BUFGCTRL Attributes
Attribute Name Description Possible Values

INIT_OUT Initializes the BUFGCTRL output to the specified 0 (default), 1
value after configuration. Sets the positive or
negative edge behavior. Sets the output level when
changing clock selection.

PRESELECT_I0 | If TRUE, the BUFGCTRL output uses the 10 input FALSE (default),
after configuration(?). TRUE

PRESELECT_I1 | If TRUE, the BUFGCTRL output uses the I1 input FALSE (default),
after configuration(?). TRUE

Notes:
1. Both PRESELECT attributes cannot be TRUE at the same time.
2. The LOC constraint is available.

BUFG

BUEFG is simply a clock buffer with one clock input and one clock output. This primitive is
based on BUFGCTRL with some pins connected to logic High or Low. Figure 1-3 illustrates
the relationship of BUFG and BUFGCTRL. A LOC constraint is available for BUFG.

IGNOREH1

Vbb
GND
GND

BUFG

Vbp

Vpp
Vbp
GND

IGNOREO

UG070_1_03_031208

Figure 1-3: BUFG as BUFGCTRL

The output follows the input as shown in the timing diagram in Figure 1-4.

BUFG(I) Jll—l\ \ /
BUFG(O) '/I Va2 Y Y

— —Tgccko o

UG070_1_04_071204

Figure 1-4: BUFG Timing Diagram

BUFGCE and BUFGCE_1

Unlike BUFG, BUFGCE is a clock buffer with one clock input, one clock output and a clock
enable line. This primitive is based on BUFGCTRL with some pins connected to logic High

Virtex-4 FPGA User Guide www.Xxilinx.com 31

UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 1: Clock Resources 2:)(||_|NX®

or Low. Figure 1-5 illustrates the relationship of BUFGCE and BUFGCTRL. A LOC
constraint is available for BUFGCE and BUFGCE_1.

BUFGCE as BUFGCTRL
IGNORET
Voo opy
GND
BUFGCE GND 1
CE

cE CEO

GND IGNOREO

ug070_1_05_081904

Figure 1-5: BUFGCE as BUFGCTRL

The switching condition for BUFGCE is similar to BUFGCTRL. If the CE input is Low prior
to the incoming rising clock edge, the following clock pulse does not pass through the
clock buffer, and the output stays Low. Any level change of CE during the incoming clock
High pulse has no effect until the clock transitions Low. The output stays Low when the
clock is disabled. However, when the clock is being disabled it completes the clock High
pulse.

Since the clock enable line uses the CE pin of the BUFGCTRL, the select signal must meet
the setup time requirement. Violating this setup time may result in a glitch. Figure 1-6
illustrates the timing diagram for BUFGCE.

\ | I
| N N L
L = |~ "BCCCKCE

BUFGCE(CE) | Ny

BUFGCE(O) _/_M : ya

— =—Tgccko_o

BUFGCE(l)

ug070_1_06_082504

Figure 1-6: BUFGCE Timing Diagram

BUFGCE_1 is similar to BUFGCE, with the exception of its switching condition. If the CE
input is Low prior to the incoming falling clock edge, the following clock pulse does not
pass through the clock buffer, and the output stays High. Any level change of CE during
the incoming clock Low pulse has no effect until the clock transitions High. The output
stays High when the clock is disabled. However, when the clock is being disabled it
completes the clock Low pulse.

32 www.Xxilinx.com Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

SOXILINX®

Global Clocking Resources

Figure 1-7 illustrates the timing diagram for BUFGCE_1.

BUFGCE_1() _/_Y\I_/Iw
[

-—T
BUFGCE_1(CE) T | I BCCCK_CE
I
| |

BUFGCE_1(0) ___ /T N__

|
—>1 =—Tgccko_0

ug070_1_07_081904

Figure 1-7: BUFGCE_1 Timing Diagram

BUFGMUX and BUFGMUX _1

BUFGMUX is a clock buffer with two clock inputs, one clock output, and a select line. This
primitive is based on BUFGCTRL with some pins connected to logic High or Low.

Figure 1-8 illustrates the relationship of BUFGMUX and BUFGCTRL. A LOC constraint is
available for BUFGMUX and BUFGCTRL.

GND IGNORE1
S CE1
S1

Vpp

BUFGMUX

>_°

_DC CEO

GND IGNOREO

ug070_1_08_071304

Figure 1-8: BUFGMUX as BUFGCTRL

Since the BUFGMUX uses the CE pins as select pins, when using the select, the setup time
requirement must be met. Violating this setup time may result in a glitch.

Switching conditions for BUFGMUX are the same as the CE pins on BUFGCTRL.
Figure 1-9 illustrates the timing diagram for BUFGMUX.

T
— BCCCK_CE

s @
|
v 1 N N N
|
0 | [
[[
TTN L lsTTN RN TT™ -
1 N —_— N_ 7/ —
i 7 an h
| |
- |<—TBCCKo,o bedin — |[<—TBCCKo,o

Figure 1-9: BUFGMUX Timing Diagram

Virtex-4 FPGA User Guide www.Xxilinx.com 33
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 1: Clock Resources i:)("JNX®

In Figure 1-9:

e The current clock is I0.

e Sisactivated High.

e If10is currently High, the multiplexer waits for I0 to deassert Low.

¢ Once 10 is Low, the multiplexer output stays Low until I1 transitions High to Low.
e When Il transitions from High to Low, the output switches to I1.

o If the setup/hold times are met, no glitches or short pulses can appear on the output.

BUFGMUX_1 is rising edge sensitive and held at High prior to input switch. Figure 1-10
illustrates the timing diagram for BUFGMUX_1. A LOC constraint is available for
BUFGMUX and BUFGMUX_1.

— +—TBCCCK_CE

s—/ |

| [

'OW
[

/s N__7 N__7 NI

— 4=
J
1
|
J
1
|
7/

—_—— ——

o0y v PN
—»| =—TBCCKO_O

UG070_1_10_082504

Figure 1-10: BUFGMUX_1 Timing Diagram

In Figure 1-10:

o The current clock is 10.

e Sisactivated High.

e IfI0is currently Low, the multiplexer waits for I0 to be asserted High.

e Once 10 is High, the multiplexer output stays High until I1 transitions Low to High.
e When I1 transitions from Low to High, the output switches to I1.

o If the setup/hold times are met, no glitches or short pulses can appear on the output.

34

www.Xxilinx.com Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

2:)(||_|NX® Global Clocking Resources

BUFGMUX_VIRTEX4

BUFGMUX_VIRTEX4 is a clock buffer with two clock inputs, one clock output, and a select
line. This primitive is based on BUFGCTRL with some pins connected to logic High or
Low. Figure 1-11 illustrates the relationship of BUFGMUX_VIRTEX4 and BUFGCTRL.

IGNORE1
CE1
St

GND
Vbp

BUFGMUX_VIRTEX4

}0

SO
CEO

Voo —————
GND IGNOREO

ug070_1_11_071304

Figure 1-11: BUFGMUX_VIRTEX4 as BUFGCTRL

BUFGMUX_VIRTEX4 uses the S pins as select pins. S can switch anytime without causing
a glitch. The setup/hold times on S determine whether the output will pass an extra pulse
of the previously selected clock before switching to the new clock. If S changes as shown in
Figure 1-12, prior to the setup time Tpccck g and before I0 transitions from High to Low,

then the output will not pass an extra pulse of 10. If S changes following the hold time for
S, then the output will pass an extra pulse. If S violates the setup /hold requirements, the

output might pass the extra pulse, but it will not glitch. In any case, the output changes to
the new clock within three clock cycles of the slower clock.

The setup /hold requirements for SO and S1 are with respect to the falling clock edge
(assuming INIT_OUT = 0), not the rising edge as for CE0 and CE1.

Switching conditions for BUFGMUX_VIRTEX4 are the same as the S pin of BUFGCTRL.
Figure 1-12 illustrates the timing diagram for BUFGMUX_VIRTEX4.

Il
— |*—Tgccko o —1 =——TBCCKO_0

ug070_1_12_080204

Figure 1-12: BUFGMUX_VIRTEX4 Timing Diagram

Other capabilities of the BUFGMUX_VIRTEX4 primitive are:

e Pre-selection of 10 and I1 input after configuration.

e Initial output can be selected as High or Low after configuration.

Virtex-4 FPGA User Guide www.Xxilinx.com 35
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 1: Clock Resources 2:)(||_|NX®

Additional Use Models

Asynchronous Mux Using BUFGCTRL

In some cases an application requires immediate switching between clock inputs or
bypassing the edge sensitivity of BUFGCTRL. An example is when one of the clock inputs
is no longer switching. If this happens, the clock output would not have the proper
switching conditions because the BUFGCTRL never detected a clock edge. This case uses
the asynchronous mux. Figure 1-13 illustrates an asynchronous mux with BUFGCTRL
design example. Figure 1-14 shows the asynchronous mux timing diagram.

Vv IGNOREH1
P CE1
Vbb
S S
Asynchronous MUX
Design Example
11
I o N o
10 >
10 A
S
SO
VoD IC(:EEI\?OREO
Vpp 7

ug070_1_13_082704

Figure 1-13: Asynchronous Mux with BUFGCTRL Design Example

|

—d_ —— b——1
T I

|

|

l

|

|

|

|

|

bl

11 I
_ Le—

o [1]

S

L

[A

—>: <-— Tgccko.o —=! =—Tsccko_ o
|

R O S R S

atlo Begin 1

@)

UG070_1_14_033005

Figure 1-14: Asynchronous Mux Timing Diagram

In Figure 1-14:

e The current clock is from I0.

e Sisactivated High.

e The Clock output immediately switches to I1.

e When Ignore signals are asserted High, glitch protection is disabled.

36

www.Xxilinx.com Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

2:)(||_|NX® Global Clocking Resources

BUFGMUX_VIRTEX4 with a Clock Enable

A BUFGMUX_VIRTEX4 with a clock enable BUFGCTRL configuration allows the user to
choose between the incoming clock inputs. If needed, the clock enable is used to disable
the output. Figure 1-15 illustrates the BUFGCTRL usage design example and Figure 1-16
shows the timing diagram.

GND IGNOREH1
CE CE1
S St

BUFGMUX_VIRTEX4+CE
Design Example

:>_2

S0
CEO
IGNOREO

GND
ug070_1_15_071304

Figure 1-15: BUFGMUX_VIRTEX4 with a CE and BUFGCTRL

1 2 3
| | o
| |
10 I : I
| e | P N
I | | | |
H_4__ L [L | 1] S
| | [
| | |
s | | _.: le—
' ' | : TecocK_CE
I I
CE | L L1
—»! <«—TBccko o —»! «— TBccko o .
| | Fe—m === F—————— o
o []] L] O R
o /
atlo Begin I Clock Off
UG070_1_16_082504
Figure 1-16: BUFGMUX_VIRTEX4 with a CE Timing Diagram
In Figure 1-16:
e Attime event 1, output O uses input I0.
e Before time event 2, S is asserted High.
e Attime Tpccko o, after time event 2, output O uses input I1. This occurs after a High
to Low transition of 10 followed by a High to Low transition of I1 is completed.
e Attime Tpccck cp before time event 3, CE is asserted Low. The clock output is
switched Low and kept at Low after a High to Low transition of I1 is completed.
Virtex-4 FPGA User Guide www.xilinx.com 37

UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 1: Clock Resources 2:)(||_|NX®

Clock Tree and Nets - GCLK

Virtex-4 FPGA clock trees are designed for low-skew and low-power operation. Any
unused branch is disconnected. The clock trees also manage the load /fanout when all the
logic resources are used.

All global clock lines and buffers are implemented differentially. This facilitates much
better duty cycles and common-mode noise rejection.

In the Virtex-4 architecture, the pin access of the global clock lines are not limited to the
logic resources clock pins. The global clock lines can access other pins in the CLBs without
using local interconnects. Applications requiring a very fast signal connection and large
load/fanout benefit from this architecture.

Clock Regions

Virtex-4 devices improve the clocking distribution by the use of clock regions. Each clock
region can have up to eight global clock domains. These eight global clocks can be driven
by any combination of the 32 global clock buffers. The restrictions and rules needed in
previous FPGA architectures are no longer applicable. Specifically, a clock region is not
limited to four quadrants regardless of die/device size. Instead, the dimensions of a clock
region are fixed to 16 CLBs tall (32 IOBs) and spanning half of the die (Figure 1-17). By
fixing the dimensions of the clock region, larger Virtex-4 devices can have more clock
regions. As a result, Virtex-4 devices can support many more multiple clock domains than
previous FPGA architectures. Table 1-6 shows the number of clock regions in each Virtex-4
device. The logic resources in the center column (DCMs, IOBs, etc.) are located in the left
clock regions.

The DCMs, if used, utilize the global clocks in the left regions as feedback lines. Up to four
DCMs can be in a specific region. If used in the same region, IDELAYCTRL uses another
global clock in that region. The DCM companion module PMCD, if directly connected to a
global clock, will also utilize the global clocks in the same region.

XC4VLX15 has 8 Clock Regions XC4VLX100 has 24 Clock Regions
_________ 1
| scBs | |
: 8CLBst |
| I
All clock regions L — — — — 8_C_LB_Si J

span half the die

All clock regions are 16 CLBs tall i
(8 CLBs up and 8 CLBs down)

Center Column
Logic Resources UG070_1_17_071304

Figure 1-17: Clock Regions

38 www.Xxilinx.com Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

2:)(||_|NX® Regional Clocking Resources

Table 1-6: Virtex-4 FPGA Clock Regions

Device Number of Clock Regions

LX Family

XC4VLX15 8
XC4VLX25 12
XC4VLX40 16
XC4VLX60 16
XC4VLX80 20
XC4VLX100 24
XC4VLX160 24
XC4VLX200 24
SX Family

XC4VSX25 8
XC4VSX35 12
XC4VSX55 16
FX Family

XC4VEX12 8
XC4VEX20 8
XC4VEX40 12
XC4VFX60 16
XC4VFX100 20
XC4VFX140 24

Regional Clocking Resources

Regional clock networks are a set of clock networks independent of the global clock
network. Unlike global clocks, the span of a regional clock signal is limited to three clock
regions. These networks are especially useful for source-synchronous interface designs.

To understand how regional clocking works, it is important to understand the signal path
of a regional clock signal. The Virtex-4 FPGA regional clocking resources and network
consist of the following paths and components:

e Clock Capable I/O

e I/0 Clock Buffer - BUFIO

¢ Regional Clock Buffer - BUFR
e Regional Clock Nets

Virtex-4 FPGA User Guide www.Xxilinx.com 39
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 1: Clock Resources i:)("JNX®

Clock Capable I/0O

In a typical clock region there are two clock capable I/O pin pairs (there are exceptions in
the center column). Clock capable I/O pairs are regular I/O pairs where the LVDS output
drivers have been removed to reduce the input capacitance. All global clock inputs are
clock capable I/Os (i.e., they do not have LVDS output drivers). There are four dedicated
clock capable I/O sites in every bank. When used as clock inputs, clock-capable pins can
drive BUFIO and BUFR. They can not directly connect to the global clock buffers. When
used as single-ended clock pins, then as described in “Global Clock Buffers”, the P-side of
the pin pair must be used because a direct connection only exists on this pin.

I/O Clock Buffer - BUFIO

The I/0 clock buffer (BUFIO) is a new clock buffer available in Virtex-4 devices. The
BUFIO drives a dedicated clock net within the I/O column, independent of the global
clock resources. Thus, BUFIOs are ideally suited for source-synchronous data capture
(forwarded /receiver clock distribution). BUFIOs can only be driven by clock capable I/Os
located in the same clock region. BUFIOs can drive the two adjacent I/O clock nets (for a
total of up to three clock regions) as well as the regional clock buffers (BUFR) in the same
region. BUFIOs cannot drive logic resources (CLB, block RAM, etc.) because the I/O clock
network only reaches the I/O column.

BUFIO Primitive

BUFIO is simply a clock in, clock out buffer. There is a phase delay between input and
output. Figure 1-18 shows the BUFIO. Table 1-7 lists the BUFIO ports. A location constraint
is available for BUFIO.

BUFIO

ug070_1_18_071304

Figure 1-18: BUFIO Primitive

Table 1-7: BUFIO Port List and Definitions

Port Name Type Width Definition
@) Output 1 Clock output port
I Input 1 Clock input port
40 www.xilinx.com Virtex-4 FPGA User Guide

UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

2:)(||_|NX® Regional Clocking Resources

BUFIO Use Models

In Figure 1-19, a BUFIO is used to drive the I/O logic using the clock capable I/O. This
implementation is ideal in source-synchronous applications where a forwarded clock is
used to capture incoming data.

A To Adjacent
/O Tile Region

I/O Tile

I/0 Tile

I/O Tile

I/0 Tile

I/O Tile

I/O Tile

Clock Capable I/O| 1/0Tile

BUFIO BUFR

—
To Fabric

Clock Capable I/O | /O Tile

I/O Tile

I/O Tile

I/O Tile

I/0O Tile

I/O Tile

I/O Tile

I/O Tile

Y To Adjacent

Region ugo70_1_19_072204

Figure 1-19: BUFIO Driving I/0 Logic In a Single Clock Region

Regional Clock Buffer - BUFR

The regional clock buffer (BUFR) is another new clock buffer available in Virtex-4 devices.
BUEFRs drive clock signals to a dedicated clock net within a clock region, independent from
the global clock tree. Each BUFR can drive the two regional clock nets in the region it is
located, and the two clock nets in the adjacent clock regions (up to three clock regions).

Virtex-4 FPGA User Guide www.Xxilinx.com 41
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 1: Clock Resources i:)("JNX®

Unlike BUFIOs, BUFRs can drive the I/O logic and logic resources (CLB, block RAM, etc.)
in the existing and adjacent clock regions. BUFRs can be driven by either the output from
BUFIOs or local interconnect. In addition, BUFR is capable of generating divided clock
outputs with respect to the clock input. The divide values are an integer between one and
eight. BUFRs are ideal for source-synchronous applications requiring clock domain
crossing or serial-to-parallel conversion. There are two BUFRs in a typical clock region
(two regional clock networks). The center column does not have BUFRs.

BUFR Primitive

BUFR is a clock-in/ clock-out buffer with the capability to divide the input clock frequency.

CE
CLR

ug070_1_20_071204

Figure 1-20: BUFR Primitive

Table 1-8: BUFR Port List and Definitions

Port Name Type Width Definition

@) Output 1 Clock output port

CE Input 1 Clock enable port. Cannot be used in
BYPASS mode.

CLR Input 1 Asynchronous clear for the divide
logic, and sets the output Low. Cannot
be used in BYPASS mode.

I Input 1 Clock input port

Additional Notes on the CE Pin

When CE is asserted /deasserted, the output clock signal turns on/off four input clock
cycles later. When global set/reset (GSR) signal is High, BUFR does not toggle, even if CE
is held High. The BUFR output toggles four clock cycles after the GSR signal is deasserted.

BUFR Attributes and Modes

Clock division in the BUFR is controlled in software through the BUFR_DIVIDE attribute.
Table 1-9 lists the possible values when using the BUFR_DIVIDE attribute.

Table 1-9: BUFR_DIVIDE Attribute

Attribute Name Description Possible Values

BUFR_DIVIDE Defines whether the output clockisa divided | 1,2,3,4,5,6,7,8

version of the input clock. BYPASS (default)

Notes:
1. Location constraint is available for BUFR.

42

www.Xxilinx.com Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

SOXILINX®

Regional Clocking Resources

The propagation delay through BUFR is different for BUFR_DIVIDE =1 and
BUFR_DIVIDE = BYPASS. When set to 1, the delay is slightly more than BYPASS. All other
divisors have the same delay BUFR_DIVIDE = 1. The phase relationship between the input
clock and the output clock is the same for all possible divisions except BYPASS.

The timing relationship between the inputs and output of BUFR when using the
BUFR_DIVIDE attribute is illustrated in Figure 1-21. In this example, the BUFR_DIVIDE
attribute is set to three. Sometime before this diagram CLR was asserted.

1 2 3 4
| | | |
7 e r e e
— L— TBRDCK_CE : : :
CE__| | | | |
oR | -
: e J'ERCKO,O TBRDO,CLio>| - I_—AI@*O
o___ | 1 1 [
| |

UG070_1_21_030806

Figure 1-21: BUFR Timing Diagrams with BUFR_DIVIDE Values

In Figure 1-21:

At time Tgrpck _cE before clock event 1, CE is asserted High.

Four clock cycles and Tgrcko o after CE is asserted, the output O begins toggling at
the divide by three rate of the input I. Tgrcxo o and other timing numbers are best
found in the speed specification.

Note: The duty cycle is not 50/50 for odd division. The Low pulse is one cycle of
longer.

At time event 2, CLR is asserted. After Tgrpo cLro from time event 2, O stops
toggling.
At time event 3, CLR is deasserted.

At time Tgrcko o after clock event 4, O begins toggling again at the divided by three
rate of L.

BUFR Use Models

BUFRs are ideal for source-synchronous applications requiring clock domain crossing or
serial-to-parallel conversion. Unlike BUFIOs, BUFRs are capable of clocking logic
resources in the FPGAs other than the IOBs. Figure 1-22 is a BUFR design example.

Virtex-4 FPGA User Guide

www.Xxilinx.com 43

UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 1: Clock Resources

SIXILINX®

Clock
Capable I/0

Clock
Capable I/0

I/O Tile

To Adjacent
A Region

I/O Tile

CLBs

I/O Tile

I/O Tile

I/O Tile

CLBs

Block
RAM

DSP
Tile

CLBs

I/O Tile

I/O Tile

I/O Tile

— — — -
[vy) [vy) [vy) [vy)
(%) (%) (%) (%)

CLBs

I/O Tile

BUFIO

BUFR

Block
RAM

DSP
Tile

I/O Tile

CLBs

I/O Tile

I/O Tile

I/O Tile

CLBs

Block
[RAM

DSP
Tile

I/O Tile

CLBs

I/O Tile

I/O Tile

CLBs

— — — —
o o o 9
(%) () (%) ()

Block
RAM

DSP
Tile

To Adjacent
Region

Figure 1-22: BUFR Driving Various Logic Resources

E—

To Center
of Die

UG070_1_22_030708

44

www.Xxilinx.com

Virtex-4 FPGA User Guide

UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

2:)(||_|NX® VHDL and Verilog Templates

Regional Clock Nets

In addition to global clock trees and nets, Virtex-4 devices contain regional clock nets.
These clock trees are also designed for low-skew and low-power operation. Unused
branches are disconnected. The clock trees also manage the load /fanout when all the logic
resources are used.

Regional clock nets do not propagate throughout the whole Virtex-4 device. Instead, they
are limited to only one clock region. One clock region contains two independent regional
clock nets.

To access regional clock nets, BUFRs must be instantiated. A BUFR can drive regional
clocks in up to two adjacent clock regions (Figure 1-23). BUFRs in the top or bottom region
can only access one adjacent region; below or above respectively.

= >

e

BUFRs

—/
A

>

ug070_1_23_071404

Figure 1-23: BUFR Driving Multiple Regions

VHDL and Verilog Templates

The VHDL and Verilog code follows for all clocking resource primitives.

BUFGCTRL VHDL and Verilog Templates

The following examples illustrate the instantiation of the BUFGCTRL module in VHDL
and Verilog.

VHDL Template
--Example BUFGCTRL declaration
component BUFGCTRL

generic (
INIT OUT : integer := 0;

Virtex-4 FPGA User Guide www.Xxilinx.com 45
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 1: Clock Resources

SIXILINX®

PRESELECT_TIO
PRESELECT_T1

boolean
boolean

)i

false;
false;

port (
0: out std_ulogic;
CEO: in std_ulogic;
CEl: in std_ulogic;
I0: in std_ulogic;
I1 in std_ulogic;
IGNOREO: in std_ulogic;
IGNOREl: in std_ulogic;
S0: in std_ulogic;
Sl: in std_ulogic

)

end component;

--Example BUFGCTRL instantiation

U_BUFGCTRL
Port map (
O => user_o,
CEO => user_ce0,
CEl => user_cel,
I0 => user_io0,
Il => user_il,
IGNOREO => user_ignore0,
IGNORE1l => user_ignorel,
S0 => user_sO0,
S1 => user_sl
)

BUFGCTRL

--Declaring constraints in VHDL file

attribute INIT_OUT integer;

attribute PRESELECT IO boolean;

attribute PRESELECT Il boolean;

attribute LOC string;

attribute INIT_OUT of U_BUFGCTRL: label is O0;
attribute PRESELECT IO of U_BUFGCTRL: label is FALSE;
attribute PRESELECT Il of U_BUFGCTRL: label is FALSE;
attribute LOC of U_BUFGCTRL: label is "BUFGCTRL_X#Y#";

--where #

Verilog Template

is valid integer locations of BUFGCTRL

//Example BUFGCTRL module declaration

module BUFGCTRL
output O;
input CEO;
input CE1;
input IO0;
input I1;
input IGNOREO;
input IGNORE];
input S0;
input S1;
parameter
parameter
parameter

(0, CEO, CE1,

INIT OUT = 0;
PRESELECT_IO0
PRESELECT_I1

I0, I1, IGNOREO, IGNOREl, S0, S1);

"FALSE";
"FALSE";

46

www.Xxilinx.com

Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

2:)(||_|NX® VHDL and Verilog Templates

endmodule;
//Example BUFGCTRL instantiation
BUFGCTRL U_BUFGCTRL (
.O(user_o),
.CEOQ (user_ce0),
.CEl (user_cel),
.I0(user_10),
.I1l(user_il),
.IGNOREO (user_ignore0) ,
.IGNOREI1 (user_ignorel),
.S0 (user_s0),
.S1 (user_sl)
)

// Declaring constraints in Verilog

// synthesis attribute INIT_OUT of U_BUFGCTRL is O0;

// synthesis attribute PRESELECT_IO0 of U_BUFGCTRL is FALSE;
// synthesis attribute PRESELECT_I1 of U_BUFGCTRL is FALSE;
// synthesis attribute LOC of U_BUFGCTRL is "BUFGCTRL_X#Y#";
// where # is valid integer locations of BUFGCTRL

Declaring Constraints in UCF File

INST "U_BUFGCTRL" INIT OUT = O0;

INST "U_BUFGCTRL" PRESELECT_IO = FALSE;

INST "U_BUFGCTRL" PRESELECT_I1 = FALSE;

INST "U_BUFGCTRL" LOC = BUFGCTRL_X#Y#;

where # is valid integer locations of BUFGCTRL

BUFG VHDL and Verilog Templates

The following examples illustrate the instantiation of the BUFG module in VHDL and
Verilog.

VHDL Template

--Example BUFG declaration
component BUFG
port (
O: out std_ulogic;
I: in std_ulogic
)i

end component;

--Example BUFG instantiation
U_BUFG : BUFG
Port map (
O => user_o,
I0 => user_1i
)
--Declaring constraints in VHDL file
attribute LOC : string;
attribute LOC of U_BUFG: label is "BUFGCTRL_X#Y#";

--where # is valid integer locations of BUFGCTRL

Virtex-4 FPGA User Guide www.Xxilinx.com 47
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 1:

Clock Resources

SIXILINX®

Verilog Template

//Example BUFG module declaration
module BUFG (0, I);
output O;
input I;
endmodule;
//Example BUFG instantiation
BUFG U_BUFG (
.O(user_o),
.I0 (user_1i)
)i

// Declaring constraints in Verilog

// synthesis attribute LOC of U_BUFG is "BUFGCTRL_X#Y#";

// where # is valid integer locations of BUFGCTRL

Declaring Constraints in UCF File

INST "U_BUFG" LOC = BUFGCTRL_X#Y#;

where # is valid integer locations of BUFGCTRL

BUFGCE and BUFGCE_1 VHDL and Verilog Templates

The following examples illustrate the instantiation of the BUFGCE module in VHDL and
Verilog. The instantiation of BUFGCE_1 is exactly the same as BUFGCE with exception of
the primitive name.

VHDL Template

--Example BUFGCE declaration
component BUFGCE
port (
O: out std_ulogic;
CE: in std_ulogic;
I: in std_ulogic
)
end component;

--Example BUFGCE instantiation

U_BUFGCE : BUFGCE
Port map (
O => user_o,
CE => user_ce,
I => user_i

) ;
--Declaring constraints in VHDL file

attribute LOC : string;
attribute LOC of U_BUFGCE: label is "BUFGCTRL_X#Y#";

--where # is valid integer locations of BUFGCTRL

48

www.Xxilinx.com Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

SOXILINX®

VHDL and Verilog Templates

Verilog Template

//Example BUFGCE module declaration
module BUFGCE (O, CE, I);

output O;

input CE;

input I;

endmodule;

//Example BUFGCE instantiation
BUFGCE U_BUFGCE (

.O(user_o),

.CEO (user_ce),

.I0 (user_1i)

)i

// Declaring constraints in Verilog

// synthesis attribute LOC of U_BUFGCE is "BUFGCTRL_X#Y#";

// where # is valid integer locations of BUFGCTRL

Declaring Constraints in UCF File

INST "U_BUFGCE" LOC = BUFGCTRL_X#Y#;

where # is valid integer locations of BUFGCTRL

BUFGMUX and BUFGMUX_1 VHDL and Verilog Templates

The following examples illustrate the instantiation of the BUFGMUX module in VHDL
and Verilog. The instantiation of BUFGMUX_1 is exactly the same as BUFGMUX with

exception of the primitive name.

VHDL Template

--Example BUFGMUX declaration
component BUFGMUX
port (
0: out std_ulogic;
I0: in std_ulogic;
I1 : in std_ulogic;
S: in std_ulogic
)

end component;

--Example BUFGMUX instantiation
U_BUFGMUX : BUFGMUX
Port map (

O => user_o,

I0 => user_io0,

Il => user_il,

S => user_s

)

--Declaring constraints in VHDL file

attribute LOC : string;

attribute LOC of U_BUFGMUX: label is "BUFGCTRL_X#Y#";
--where # is valid integer locations of BUFGCTRL

Virtex-4 FPGA User Guide www.Xxilinx.com
UGO070 (v2.6) December 1, 2008

49

http://www.xilinx.com

Chapter 1: Clock Resources 2:)(||_|NX®

Verilog Template

//Example BUFGMUX module declaration
module BUFGMUX (O, IO, I1, S);

output O;
input IO0;
input I1;
input S;

endmodule;
//Example BUFGMUX instantiation

BUFGMUX U_BUFGMUX (
.O(user_o),

.I0 (user_1i0),
.I1(user_il),

.S0 (user_s)

)

// Declaring constraints in Verilog
// synthesis attribute LOC of U_BUFGMUX is "BUFGCTRL_X#Y#";
// where # is valid integer locations of BUFGCTRL

Declaring Constraints in UCF File

INST "U_BUFGMUX" LOC = BUFGCTRL_X#Y#;

where # is valid integer locations of BUFGCTRL

BUFGMUX_VIRTEX4 VHDL and Verilog Templates

The following examples illustrate the instantiation of the BUFGMUX_VIRTEX4 module in
VHDL and Verilog.

VHDL Template

--Example BUFGMUX_VIRTEX4 declaration
component BUFGMUX_VIRTEX4
port (

O : out std_ulogic;

I0 : in std_ulogic;

I1 : in std_ulogic;

S : in std_ulogic

)

end component;
--Example BUFGMUX_VIRTEX4 instantiation

U_BUFGMUX_VIRTEX4 : BUFGMUX_VIRTEX4
Port map (

O => user_o,

I0 => user_io0,

Il => user_il,

S => user_s

)

50 www.Xxilinx.com Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

2:)(||_|NX® VHDL and Verilog Templates

--Declaring constraints in VHDL file
attribute INIT_ OUT : integer;
attribute PRESELECT_IO : boolean;

attribute PRESELECT Il : boolean;
attribute LOC : string;

attribute INIT_OUT of U_BUFGMUX_VIRTEX4: label is O0;
attribute PRESELECT I0 of U_BUFGMUX_VIRTEX4: label is FALSE;
attribute PRESELECT_ Il of U_BUFGMUX_VIRTEX4: label is FALSE;
attribute LOC of U_BUFGMUX_VIRTEX4: label is "BUFGCTRL_X#Y#";
--where # is valid integer locations of BUFGCTRL

Verilog Template

//Example BUFGMUX_VIRTEX4 module declaration

module BUFGMUX_VIRTEX4 (O, IO, Il, S);

output O;
input I0;
input Il1;
input S;

parameter INIT OUT = 1'b0;

parameter PRESELECT_IO = "TRUE";
parameter PRESELECT Il = "FALSE";
endmodule;

//Example BUFGCTRL instantiation

BUFGMUX_VIRTEX4 U_BUFGMUX_VIRTEX4 (
.O(user_o),
.I0 (user_i0),
.I1 (user_il),
.S(user_s)
)

// Declaring constraints in Verilog

// synthesis attribute INIT_OUT of U_BUFGMUX_VIRTEX4 is 0;

// synthesis attribute PRESELECT_IO0 of U_BUFGMUX_VIRTEX4 is FALSE;

// synthesis attribute PRESELECT_I1 of U_BUFGMUX_VIRTEX4 is FALSE;

// synthesis attribute LOC of U_BUFGMUX_VIRTEX4 is "BUFGCTRL_X#Y#";
// where # is valid integer locations of BUFGCTRL

Declaring Constraints in UCF File

INST "U_BUFGMUX_VIRTEX4" INIT OUT = O;

INST "U_BUFGMUX_VIRTEX4" PRESELECT_IO = FALSE;
INST "U_BUFGMUX_VIRTEX4" PRESELECT_TI1 FALSE;
INST "U_BUFGMUX_VIRTEX4" LOC = BUFGCTRL_X#Y#;

where # is valid integer locations of BUFGCTRL

Virtex-4 FPGA User Guide www.Xxilinx.com 51
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 1: Clock Resources 2:)(||_|NX®

BUFIO VHDL and Verilog Templates

The following examples illustrate the instantiation of the BUFIO module in VHDL and
Verilog.

VHDL Template

--Example BUFIO declaration

component BUFIO

port (
O: out std_ulogic;
I: in std_ulogic
)

end component;

--Example BUFIO instantiation
U_BUFIO : BUFIO
Port map (

O => user_o,

I0 => user_1i

)i

--Declaring constraints in VHDL file

attribute LOC : string;
attribute LOC of U_BUFIO: label is "BUFIO_X#Y#";

--where # is valid integer locations of BUFIO

Verilog Template
//Example BUFIO module declaration

module BUFIO (O, I);

output O;
input I;

endmodule;
//Example BUFIO instantiation

BUFIO U_BUFIO (
.O(user_o),
.I(user_1i)

)i

// Declaring constraints in Verilog
// synthesis attribute LOC of U_BUFIO is "BUFIO_X#Y#";
// where # is valid integer locations of BUFIO

Declaring Constraints in UCF File

INST "U_BUFIO" LOC = BUFIO_X#Y#;
where # is valid integer locations of BUFIO

52 www.Xxilinx.com Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

2:)(||_|NX® VHDL and Verilog Templates

BUFR VHDL and Verilog Templates

The following examples illustrate the instantiation of the BUFR module in VHDL and
Verilog.

VHDL Template

--Example BUFR declaration

component BUFR
generic (

BUFR_DIVIDE : string := "BYPASS";
)

port (
O: out std_ulogic;
CE: in std_ulogic;
CLR: in std_ulogic;
I: in std_ulogic
)
end component;

--Example BUFR instantiation

U_BUFR : BUFR

Port map (
O => user_o,
CE => user_ce,
CLR => user_clr,
I => user_1

)
--Declaring constraints in VHDL file

attribute BUFR_DIVIDE : string;

attribute LOC : string;

attribute INIT_OUT of U_BUFR: label is BYPASS;
attribute LOC of U_BUFR: label is "BUFR_X#Y#";

--where # 1is valid integer locations of BUFR

Verilog Template

//Example BUFR module declaration

module BUFR (O, CE, CLR, I);
output O;
input CE;
input CLR;
input I;
parameter BUFR_DIVIDE = "BYPASS";

endmodule;

//Example BUFR instantiation
BUFR U_BUFR (

.O(user_o),

.CE (user_ce),

.CLR (user_clr),

Virtex-4 FPGA User Guide www.Xxilinx.com 53
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 1: Clock Resources 2:)(||_|NX®

.I(user_1i)

)

// Declaring constraints in Verilog

// synthesis attribute BUFR_DIVIDE of U_BUFR is BYPASS;
// synthesis attribute LOC of U_BUFR is "BUFR_X#Y#";

// where # is valid integer locations of BUFR

Declaring Constraints in UCF File

INST "U_BUFR" BUFR_DIVIDE=BYPASS;
INST "U_BUFR" LOC = BUFR_X#Y#;
where # is valid integer locations of BUFR

54

www.Xxilinx.com Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

S XILINX®

Chapter 2

Digital Clock Managers (DCMs)

DCM Summary

The Virtex®-4 FPGA Digital Clock Managers (DCMs) provide a wide range of powerful
clock management features:

Clock Deskew

The DCM contains a delay-locked loop (DLL) to completely eliminate clock
distribution delays, by deskewing the DCM's output clocks with respect to the input
clock. The DLL contains delay elements (individual small buffers) and control logic.
The incoming clock drives a chain of delay elements, thus the output of every delay
element represents a version of the incoming clock delayed at a different point.

The control logic contains a phase detector and a delay-line selector. The phase
detector compares the incoming clock signal (CLKIN) against a feedback input
(CLKFB) and steers the delay line selector, essentially adding delay to the output of
DCM until the CLKIN and CLKFB coincide.

Frequency Synthesis

Separate outputs provide a doubled frequency (CLK2X and CLK2X180). Another
output, CLKDYV, provides a frequency that is a specified fraction of the input
frequency.

Two other outputs, CLKFX and CLKFX180, provide an output frequency derived from
the input clock by simultaneous frequency division and multiplication. The user can
specify any integer multiplier (M) and divisor (D) within the range specified in the
DCM Timing Parameters section of the Virtex-4 Data Sheet. An internal calculator
determines the appropriate tap selection, to make the output edge coincide with the
input clock whenever mathematically possible. For example, M =9 and D =5,
multiply the frequency by 1.8, and the output rising edge is coincident with the input
rising edge after every fifth input period, or after every ninth output period.

Phase Shifting

The DCM allows coarse and fine-grained phase shifting. The coarse phase shifting
uses the 90°, 180°, and 270° phases of CLKO to make CLK90, CLK180, and CLK270
clock outputs. The 180° phase of CLK2X and CLKFX provide the respective CLK2X180
and CLKFX180 clock outputs.

There are also four modes of fine-grained phase-shifting; fixed, variable-positive,
variable-center, and direct modes. Fine-grained phase shifting allows all DCM output
clocks to be phase-shifted with respect to CLKIN while maintaining the relationship
between the coarse phase outputs. With fixed mode, a fixed fraction of phase shift can
be defined during configuration and in multiples of the clock period divided by 256.
Using the variable-positive and variable-center modes the phase can be dynamically
and repetitively moved forward and backwards by 1/256 of the clock period. With the

Virtex-4 FPGA User Guide

www.Xxilinx.com 55

UGO070 (v2.6) December 1, 2008

http://www.xilinx.com/support/documentation/data_sheets/ds302.pdf
http://www.xilinx.com

Chapter 2: Digital Clock Managers (DCMs) 2:)(||_|NX®

direct mode the phase can be dynamically and repetitively moved forward and
backwards by the value of one DCM_TAP. See the DCM Timing Parameters section in
the Virtex-4 Data Sheet.

¢ Dynamic Reconfiguration

There is a bus connection to the DCM to change DCM attributes without reconfiguring
the rest of the device. For more information, see the Dynamic Reconfiguration chapter
of the Virtex-4 Configuration Guide.

The DADDR[6:0], DI[15:0], DWE, DEN, DCLK inputs and DO[15:0], and DRDY
outputs are available to dynamically reconfigure select DCM functions. With dynamic
reconfiguration, DCM attributes can be changed to select a different phase shift,
multiply (M) or divide (D) from the currently configured settings.

Figure 2-1 shows a simplified view of the Virtex-4 FPGA center column resources
including all DCM locations. Table 2-1 summarizes the availability of DCMs in each
Virtex-4 device.

DCMs
(Top Half)

PMCDs
(Top Half)

I/Os

BUFGCTRLs
(Top Half) Virtex-4 FPGA
Center Column

BUFGCTRLs
(Bottom Half)

I/Os

PMCDs
(Bottom Half)

DCMs
(Bottom Half)

UG070_2_01_030708

Figure 2-1: DCM Location

56 www.Xxilinx.com Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com/support/documentation/data_sheets/ds302.pdf
http://www.xilinx.com

SOXILINX®

DCM Primitives

Table 2-1: Available DCM Resources
Device Available DCMs Site Names

XC4VLX15 4 Bottom Half:

XC4AVSX25 DCM_ADV_X0Y0, DCM_ADV_X0Y1

XC4VFX12, XC4VEX20 Top Half:
DCM_ADV_X0Y2, DCM_ADV_X0Y3

XC4VLX25, XC4VLX40, XC4VLX60 8 Bottom Half:

XC4VSX35, XC4VSX55 DCM_ADV_X0Y0, DCM_ADV_X0Y1, DCM_ADV_X0Y2

XC4VEX40 Top Half:
DCM_ADV_X0Y3,DCM_ADV_X0Y4, DCM_ADV_X0Y5,
DCM_ADV_X0Y6, DCM_ADV_X0Y7

XC4VLX80, XC4VLX100, XC4VLX160, 12 Bottom Half:

XC4VLX200 DCM_ADV_X0Y0, DCM_ADV_X0Y1, DCM_ADV_X0Y2,

XC4VFX60, XC4VEX100 DCM_ADV_X0Y3, DCM_ADV_X0Y4, DCM_ADV_X0Y5
Top Half:
DCM_ADV_X0Y6, DCM_ADV_X0Y7, DCM_ADV_X0YS8,
DCM_ADV_X0Y9, DCM_ADV_X0Y10,
DCM_ADV_X0Y11

XC4VFX140 20 Bottom Half:

DCM_ADV_X0Y0, DCM_ADV_X0Y1, DCM_ADV_X0Y2,
DCM_ADV_X0Y3, DCM_ADV_X0Y4, DCM_ADV_X0Y5,
DCM_ADV_X0Y6, DCM_ADV_X0Y7, DCM_ADV_X0YS,
DCM_ADV_X0Y9

Top Half:

DCM_ADV_X0Y10, DCM_ADV_X0Y11
DCM_ADV_X0Y12, DCM_ADV_X0Y13
DCM_ADV_X0Y14, DCM_ADV_X0Y15
DCM_ADV_X0Y16, DCM_ADV_X0Y17
DCM_ADV_X0Y18, DCM_ADV_X0Y19

DCM Primitives

Three DCM primitives are available: DCM_BASE, DCM_PS, and DCM_ADYV (see

Figure 2-2).

DCM_BASE DCM_PS DCM_ADV
—={CLKIN CLKOf— —{CLKIN CLKOf— —=|CLKIN CLKOf—
—+|CLKFB CLK90}— —»|CLKFB CLK9O}— —+|CLKFB CLK90}—

CLK180}— CLK180}— CLK180}—
--=|RST CLK270}— --=|RST CLK270}— --+=|RST CLK270}—
CLK2X180}— ~~~|PSEN CcLk2X180}— -~ ~-|PSEN CLK2X180|—
—|PSCLK —|PSCLK
CLKDV |— CLKDV |— CLKDV |—
- -~ DADDR][6:0]
CLKFX}— CLKFXt— _ _.{pj[15:0] CLKFX}—
CLKFX180|— CLKFX180— _ _.|pwE CLKFX180}—
LOCKED} -» LOCKED} -~ - -»|DEN LOCKED} -~
PSDONE} -» —|DCLK PSDONE} -~
DO[15:0]} -~ DO[15:0]} -~
DRDY| -»
UG070_2_02_080204
Figure 2-2: DCM Primitives

Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

www.Xxilinx.com

57

http://www.xilinx.com

Chapter 2: Digital Clock Managers (DCMs) 2:)(||_|NX®

DCM_BASE Primitive

The DCM_BASE primitive accesses the basic frequently used DCM features and simplifies
the user-interface ports. The clock deskew, frequency synthesis, and fixed-phase shifting
features are available to use with DCM_BASE. Table 2-2 lists the available ports in the
DCM_BASE primitive.

Table 2-2: DCM_BASE Primitive

Available Ports Port Names
Clock Input CLKIN, CLKFB
Control and Data Input | RST
Clock Output CLKO, CLK90, CLK180, CLK270, CLK2X, CLK2X180, CLKDV,
CLKFX, CLKFX180

Status and Data Output | LOCKED

DCM_PS Primitive

The DCM_PS primitive accesses all DCM features and ports available in DCM_BASE plus
additional ports used by the variable phase shifting feature. DCM_PS also has the
following available DCM features: clock deskew, frequency synthesis, and fixed or
variable phase-shifting. Table 2-3 lists the available ports in the DCM_PS primitive.

Table 2-3: DCM_PS Primitive
Available Ports Port Names

Clock Input CLKIN, CLKFB, PSCLK

Control and Data Input RST, PSINCDEC, PSEN

Clock Output CLKO, CLK90, CLK180, CLK270, CLK2X, CLK2X180, CLKDV,
CLKEFX, CLKFX180

Status and Data Output LOCKED, PSDONE, DO[15:0]

DCM_ADV Primitive

The DCM_ADV primitive has access to all DCM features and ports available in DCM_PS
plus additional ports for the dynamic reconfiguration feature. It is a superset of the other
two DCM primitives. DCM_ADV uses all the DCM features including clock deskew,
frequency synthesis, fixed or variable phase shifting, and dynamic reconfiguration.

Table 2-4 lists the available ports in the DCM_ADYV primitive.

Table 2-4: DCM_ADV Primitive

Available Ports Port Names
Clock Input CLKIN, CLKFB, PSCLK, DCLK
Control and Data Input RST, PSINCDEC, PSEN, DADDR([6:0], DI[15:0], DWE, DEN
Clock Output CLKO0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, CLKDV,
CLKEFX, CLKFX180
Status and Data Output LOCKED, PSDONE, DOJ[15:0], DRDY

58 www.Xxilinx.com Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

2:)(||_|NX® DCM Ports

DCM Ports

There are four types of DCM ports available in the Virtex-4 architecture:

¢ Clock Input Ports

e Control and Data Input Ports
e Clock Output Ports

e Status and Data Output Ports

Clock Input Ports

Source Clock Input — CLKIN

The source clock (CLKIN) input pin provides the source clock to the DCM. The CLKIN
frequency must fall in the ranges specified in the Virtex-4 Data Sheet. The clock input signal
comes from one of the following buffers:

1. IBUFG -Global Clock Input Buffer

The DCM compensates for the clock input path when an IBUFG on the same edge (top
or bottom) of the device as the DCM is used.

2. BUFGCTRL -Internal Global Clock Buffer

Any BUFGCTRL can drive any DCM in the Virtex-4 device using dedicated global
routing. A BUFGCTRL can drive the DCM CLKIN pin when used to connect two
DCMs in series.

3. IBUF —Input Buffer

When an IBUF drives the CLKIN input, the PAD to DCM input skew is not
compensated.

Feedback Clock Input — CLKFB

The feedback clock (CLKFB) input pin provides a reference or feedback signal to the DCM
to delay-compensate the clock outputs, and align them with the clock input. To provide the
necessary feedback to the DCM, connect only the CLK0 DCM output to the CLKFB pin.
When the CLKFB pin is connected, all clock outputs are deskewed to CLKIN. When the
CLKEFB pin is not connected, DCM clock outputs are not deskewed to CLKIN. However,
the relative phase relationship between all output clocks is preserved.

During internal feedback configuration, the CLKO output of a DCM connects to a global
buffer on the same top or bottom half of the device. The output of the global buffer
connects to the CLKFB input of the same DCM.

During the external feedback configuration, the following rules apply:

1. To forward the clock, the CLKO of the DCM must directly drive an OBUF or a BUFG-
to-DDR configuration.

2. External to the FPGA, the forwarded clock signal must be connected to the IBUFG
(GCLK pin) or the IBUF driving the CLKFB of the DCM. Both CLK and CLKFB should
have identical I/O buffers.

Figure 2-9 and Figure 2-10, in “Application Examples,” page 82, illustrate clock
forwarding with external feedback configuration.

The feedback clock input signal can be driven by one of the following buffers:

Virtex-4 FPGA User Guide www.Xxilinx.com 59
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com/support/documentation/data_sheets/ds302.pdf
http://www.xilinx.com

Chapter 2: Digital Clock Managers (DCMs) i:)("JNX®

1. IBUFG -Global Clock Input Buffer

This is the preferred source for an external feedback configuration. When an IBUFG
drives a CLKFB pin of a DCM in the same top or bottom half of the device, the pad to
DCM skew is compensated for deskew.

2. BUFGCTRL - Internal Global Clock Buffer

This is an internal feedback configuration.

3. IBUF -Input Buffer

This is an external feedback configuration. When IBUF is used, the PAD to DCM input
skew is not compensated.

Phase-Shift Clock Input — PSCLK

The phase-shift clock (PSCLK) input pin provides the source clock for the DCM phase
shift. The PSCLK can be asynchronous (in phase and frequency) to CLKIN. The phase-shift
clock signal can be driven by any clock source (external or internal), including;:

1. IBUF —Input Buffer
2. IBUFG -Global Clock Input Buffer

To access the dedicated routing, only the IBUFGs on the same edge of the device (top
or bottom) as the DCM can be used to drive a PSCLK input of the DCM.

3. BUFGCTRL - An Internal Global Buffer

4. Internal Clock —Any internal clock using general purpose routing.

The frequency range of PSCLK is defined by PSCLK_FREQ_LF/HEF (see the Virtex-4 Data
Sheet). This input must be tied to ground when the CLKOUT_PHASE_SHIFT attribute is
set to NONE or FIXED.

Dynamic Reconfiguration Clock Input — DCLK

The dynamic reconfiguration clock (DCLK) input pin provides the source clock for the
DCM's dynamic reconfiguration circuit. The frequency of DCLK can be asynchronous (in
phase and frequency) to CLKIN. The dynamic reconfiguration clock signal is driven by
any clock source (external or internal), including:

1. IBUF —Input Buffer
2. IBUFG -Global Clock Input Buffer

Only the IBUFGs on the same edge of the device (top or bottom) as the DCM can be
used to drive a CLKIN input of the DCM.

3. BUFGCTRL - An Internal Global Buffer

4. Internal Clock —Any internal clock using general purpose routing.

The frequency range of DCLK is described in the Virtex-4 Data Sheet. When dynamic
reconfiguration is not used, this input must be tied to ground. See the dynamic
reconfiguration chapter in the Virtex-4 Configuration Guide for more information.

60 www.Xxilinx.com Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com/support/documentation/data_sheets/ds302.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds302.pdf
http://www.xilinx.com

2:)(||_|NX® DCM Ports

Control and Data Input Ports

Reset Input — RST

The reset (RST) input pin resets the DCM circuitry. The RST signal is an active High
asynchronous reset. Asserting the RST signal asynchronously forces all DCM outputs Low
(the LOCKED signal, all status signals, and all output clocks) after some propagation delay.
When the reset is asserted, the last cycle of the clocks can exhibit a short pulse and a
severely distorted duty-cycle, or no longer be deskewed with respect to one another while
deasserting Low. Deasserting the RST signal starts the locking process at the next CLKIN
cycle.

To ensure a proper DCM reset and locking process, the RST signal must be held until the
CLKIN and CLKFB signals are present and stable for at least 200 ms. (The 200 ms
requirement for CLKFB only applies when external feedback is used.)

The time it takes for the DCM to lock after a reset is specified in the Virtex-4 Data Sheet as
LOCK_DLL (for a DLL output) and LOCK_EX (for a DFS output). These are the CLK and
CLKEX outputs described in “Clock Output Ports”. The DCM locks faster at higher
frequencies. The worse-case numbers are specified in the Virtex-4 Data Sheet. In all designs,
the DCM must be held in reset until CLKIN is stable.

Phase-Shift Increment/Decrement Input — PSINCDEC

The phase-shift increment/decrement (PSINCDEC) input signal must be synchronous
with PSCLK. The PSINCDEC input signal is used to increment or decrement the phase-
shift factor when PSEN is activated. As a result, the output clocks are shifted. The
PSINCDEC signal is asserted High for increment or deasserted Low for decrement. This
input must be tied to ground when the CLKOUT_PHASE_SHIFT attribute is set to NONE
or FIXED.

Phase-Shift Enable Input — PSEN

The phase-shift enable (PSEN) input signal must be synchronous with PSCLK. A variable
phase-shift operation is initiated by the PSEN input signal. It must be activated for one
period of PSCLK. After PSEN is initiated, the phase change is gradual with completion
indicated by a High pulse on PSDONE. There are no sporadic changes or glitches on any
output during the phase transition. From the time PSEN is enabled until PSDONE is
flagged, the DCM output clock moves bit-by-bit from its original phase shift to the target
phase shift. The phase shift is complete when PSDONE is flagged. PSEN must be tied to
ground when the CLKOUT_PHASE_SHIFT attribute is set to NONE or FIXED. Figure 2-7
shows the timing for this input.

Dynamic Reconfiguration Data Input — DI[15:0]

The dynamic reconfiguration data (DI) input bus provides reconfiguration data for
dynamic reconfiguration. When not used, all bits must be assigned zeros. See the Dynamic
Reconfiguration chapter of the Virtex-4 Configuration Guide for more information.

Dynamic Reconfiguration Address Input — DADDR[6:0]

The dynamic reconfiguration address (DADDR) input bus provides a reconfiguration
address for the dynamic reconfiguration. When not used, all bits must be assigned zeros.
The DO output bus will reflect the DCM’s status. See the Dynamic Reconfiguration chapter
of the Virtex-4 Configuration Guide for more information.

Virtex-4 FPGA User Guide www.Xxilinx.com 61
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com/support/documentation/data_sheets/ds302.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds302.pdf
http://www.xilinx.com

Chapter 2: Digital Clock Managers (DCMs) XX"JNX@

Dynamic Reconfiguration Write Enable Input — DWE

The dynamic reconfiguration write enable (DWE) input pin provides the write enable
control signal to write the DI data into the DADDR address. When not used, it must be tied
Low. See the Dynamic Reconfiguration chapter of the Virtex-4 Configuration Guide for more
information.

Dynamic Reconfiguration Enable Input — DEN

The dynamic reconfiguration enable (DEN) input pin provides the enable control signal to
access the dynamic reconfiguration feature. When the dynamic reconfiguration feature is
not used, DEN must be tied Low. When DEN is tied Low, DO reflects the DCM status
signals. See the Dynamic Reconfiguration chapter of the Virtex-4 Configuration Guide for
more information.

Clock Output Ports

A DCM provides nine clock outputs with specific frequency and phase relationships.
When CLKEFB is connected, all DCM clock outputs have a fixed phase relationship to
CLKIN. When CLKEFB is not connected, the DCM outputs are not phase aligned. However,
the phase relationship between all output clocks is preserved.

1x Output Clock — CLKO

The CLKO output clock provides a clock with the same frequency as the DCM'’s effective
CLKIN frequency. By default, the effective input clock frequency is equal to the CLKIN
frequency. The CLKIN_DIVIDE_BY_2 attribute is set to TRUE to make the effective CLKIN
frequency Y2 the actual CLKIN frequency. The CLKIN_DIVIDE_BY_2 Attribute description
provides further information. When CLKFB is connected, CLKO is phase aligned to
CLKIN.

1x Output Clock, 90° Phase Shift — CLK90

The CLK90 output clock provides a clock with the same frequency as the DCM’s CLKO
only phase-shifted by 90°.

1x Output Clock, 180° Phase Shift — CLK180

The CLK180 output clock provides a clock with the same frequency as the DCM’s CLKO
only phase-shifted by 180°.

1x Output Clock, 270° Phase Shift — CLK270

The CLK270 output clock provides a clock with the same frequency as the DCM’s CLKO
only phase-shifted by 270°.

2x Output Clock — CLK2X

The CLK2X output clock provides a clock that is phase aligned to CLKO, with twice the
CLKO frequency, and with an automatic 50/50 duty-cycle correction. Until the DCM is
locked, the CLK2X output appears as a 1x version of the input clock with a 25/75 duty
cycle. This behavior allows the DCM to lock on the correct edge with respect to the source
clock.

62

www.Xxilinx.com Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

2:)(||_|NX® DCM Ports

2x Output Clock, 180° Phase Shift — CLK2X180

The CLK2X180 output clock provides a clock with the same frequency as the DCM’s
CLK2X only phase-shifted by 180°.

Frequency Divide Output Clock — CLKDV

The CLKDV output clock provides a clock that is phase aligned to CLKO with a frequency
that is a fraction of the effective CLKIN frequency. The fraction is determined by the
CLKDV_DIVIDE attribute. Refer to the CLKDV_DIVIDE Attribute for more information.

Frequency-Synthesis Output Clock — CLKFX

The CLKEX output clock provides a clock with the following frequency definition:
CLKFX frequency = (M/D) x effective CLKIN frequency

In this equation, M is the multiplier (numerator) with a value defined by the
CLKFX_MULTIPLY attribute. D is the divisor (denominator) with a value defined by the
CLKFX_DIVIDE attribute. Specifications for M and D, as well as input and output
frequency ranges for the frequency synthesizer, are provided in the Virtex-4 Data Sheet.

The rising edge of CLKFX output is phase aligned to the rising edges of CLK0, CLK2X, and
CLKDV. When M and D to have no common factor, the alignment occurs only once every
D cycles of CLKO.

Frequency-Synthesis Output Clock, 180° — CLKFX180

The CLKFX180 output clock provides a clock with the same frequency as the DCM’s
CLKEFEX only phase-shifted by 180°.

Status and Data Output Ports

Locked Output — LOCKED

The LOCKED output indicates whether the DCM clock outputs are valid, i.e., the outputs
exhibit the proper frequency and phase. After a reset, the DCM samples several thousand
clock cycles to achieve lock. After the DCM achieves lock, the LOCKED signal is asserted
High. The DCM timing parameters section of the Virtex-4 Data Sheet provides estimates for
locking times.

To guarantee an established system clock at the end of the start-up cycle, the DCM can
delay the completion of the device configuration process until after the DCM is locked. The
STARTUP_WAIT attribute activates this feature. The STARTUP_WAIT Attribute
description provides further information.

Until the LOCKED signal is asserted High, the DCM output clocks are not valid and can
exhibit glitches, spikes, or other spurious movement. In particular, the CLK2X output
appears as a 1x clock with a 25/75 duty cycle.

Phase-Shift Done Output — PSDONE

The phase-shift done (PSDONE) output signal is synchronous to PSCLK. At the
completion of the requested phase shift, PSDONE pulses High for one period of PSCLK.
This signal also indicates a new change to the phase shift can be initiated. The PSDONE
output signal is not valid if the phase-shift feature is not being used or is in fixed mode.

Virtex-4 FPGA User Guide www.Xxilinx.com 63
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com/support/documentation/data_sheets/ds302.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds302.pdf
http://www.xilinx.com

Chapter 2: Digital Clock Managers (DCMs)

SIXILINX®

Status or Dynamic Reconfiguration Data Output — DO[15:0]

The DO output bus provides DCM status or data output when using dynamic
reconfiguration (Table 2-5). Further information on using DO as the data output is
available in the Dynamic Reconfiguration chapter of the Virtex-4 Configuration Guide for
more information.

If the dynamic reconfiguration port is not used, using DCM_BASE or DCM_PS instead of
DCM_ADYV is strongly recommended.

Table 2-5: DCM Status Mapping to DO Bus

DO Bit

Status

Description

DO[0]

Phase-shift overflow

Asserted when the DCM is phase-shifted beyond the
allowed phase-shift value or when the absolute delay
range of the phase-shift delay line is exceeded.

DOJ[1]

CLKIN stopped

Asserted when the input clock is stopped (CLKIN
remains High or Low for one or more clock cycles).
When CLKIN is stopped, the DO[1] CLKIN stopped
status is asserted within nine CLKIN cycles. When
CLKIN is restarted, CLKO starts toggling and DO[1] is
deasserted within nine clock cycles.

DOI2]

CLKFX stopped

Asserted when CLKFX stops. The DO[2] CLKFX
stopped status is asserted within 257 to 260 CLKIN
cycles after CLKFX stopped. CLKEX will not resume,
and DOJ2] is not deasserted until the DCM is reset.

DO[3]

CLKEB stopped

Asserted when the feedback clock is stopped (CLKFB
remains High or Low for one or more clock cycles). The
DO[3] CLKFB stopped status is asserted within six
CLKIN cycles after CLKFB is stopped. CLKFB stopped
is deasserted within six CLKIN cycles when CLKFB
resumes after being stopped momentarily. An
occasionally skipped CLKFB will not affect the DCM
operation. However, stopping CLKFB for a long time
can resultin the DCM losing LOCKED. When LOCKED
is lost, the DCM needs to be reset to resume operation.

DO[15:4]

Not assigned

When LOCKED is Low (during reset or the locking process), all the status signals deassert

Low.

Dynamic Reconfiguration Ready Output — DRDY

The dynamic reconfiguration ready (DRDY) output pin provides the response to the DEN
signal for the DCM’s dynamic reconfiguration feature. Further information on the DRDY
pin is available in the dynamic reconfiguration section in the Virtex-4 Configuration Guide.

64

www.Xxilinx.com Virtex-4 FPGA User Guide

UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

2:)(||_|NX® DCM Attributes

DCM Attributes

A handful of DCM attributes govern the DCM functionality. Table 2-6 summarizes all the
applicable DCM attributes. This section provides a detailed description of each attribute.

For more information on applying these attributes in UCF, VHDL, or Verilog code, refer to
the Constraints Guide at:

http:/ /www.support.xilinx.com/support/software_manuals.htm

Table 2-6: DCM Attributes

DCM Attribute Name Description Values Default Value
CLK_FEEDBACK Determines the type of feedback | String: “1X” or “NONE” 1X
applied to CLKFB.
CLKDV_DIVIDE Controls CLKDV such that the Real: 2.0
source clock is divided by N. 1.5,2.0,2.5,3.0,3.5,4.0,4.5,5.0,
This feature provides automatic 55,6.0,65,7.0,7.5,8,9,10,11,

duty cycle correction such that the 12,13,14,15, 16
CLKDV output pin has a 50/50
duty cycle always in low-frequency
mode, as well as for all integer
values of the division factor N in
high-frequency mode.

CLKEX_DIVIDE Sets the divisor (D) value of CLKFX. | Integer: 1 to 32 1
The CLKFX frequency equals the
effective CLKIN frequency
multiplied by M/D.

CLKFX_MULTIPLY Sets the multiply (M) of CLKFX. Integer: 2 to 32 4
The CLKFX frequency equals the
effective CLKIN frequency
multiplied by M/D.

CLKIN_DIVIDE_BY_2 Allows for the input clock Boolean: FALSE or TRUE FALSE
frequency to be divided in half
when necessary to meet the DCM
input clock frequency requirements.

CLKIN_PERIOD Specifies the source clock period to | Real in ns 0.0
help the DCM adjust for optimum
CLKFX/CLKFX180 outputs.

CLKOUT_PHASE_SHIFT Specifies the phase-shift mode. String: “NONE”, “FIXED”, NONE

“VARIABLE_POSITIVE”,
“VARIABLE_CENTER”, or
“DIRECT”

Virtex-4 FPGA User Guide www.Xxilinx.com 65
UGO070 (v2.6) December 1, 2008

http://www.support.xilinx.com/support/software_manuals.htm
http://www.xilinx.com

Chapter 2: Digital Clock Managers (DCMs)

SIXILINX®

Table 2-6: DCM Attributes (Continued)

DCM Attribute Name

Description

Values

Default Value

DCM_AUTOCALIBRATION

When this attribute is TRUE, the
DCM is protected from the effects
of negative bias temperature
instability (NBTI). This attribute
cannot be set to FALSE unless
CLKIN and CLKFB (if external
feedback is used) are guaranteed
to never stop. The macro can also
be disabled if the user can
guarantee to hold DCM in reset
during clock stoppage. If this
attribute is set to FALSE, the reset
requirement is three clock cycles.

Boolean: TRUE or FALSE

TRUE

DCM_PERFORMANCE_MODE | Allows selection between String: “MAX_SPEED” or MAX_SPEED
maximum frequency/ minimum “MAX_RANGE”
jitter and low frequency /maximum
phase-shift range.

DESKEW_ADJUST Affects the amount of delay in the String: SYSTEM_
feedback path, and should be used | “SYSTEM_SYNCHRONOQOUS” | SYNCHRONOUS
for source-synchronous interfaces. or

“SOURCE_SYNCHRONOUS”

DFS_FREQUENCY_MODE Specifies the frequency mode of the | String: “LOW” or “HIGH” LOW
frequency synthesizer.

DLL_FREQUENCY_MODE Specifies the frequency mode of the | String: “LOW” or “HIGH” LOW
DLL.

DUTY_CYCLE_CORRECTION Controls the DCM 1X outputs Boolean: TRUE or FALSE TRUE
(CLKO0, CLK90, CLK180, and
CLK270), to exhibit a 50/50 duty
cycle. Leave this attribute set at the
default value.

FACTORY_JF Controls the DCM tap update rate. | BIT_VECTOR FOFO
Value depends on
DLL_FREQUENCY_MODE setting.

PHASE_SHIFT Specifies the phase-shift numerator. | Integer: 0
The value range depends on —-255 to 255
CLKOUT_PHASE_SHIFT and or
clock frequency:. 0 to 1023

STARTUP_WAIT When this attribute is set to TRUE, | Boolean: FALSE or TRUE FALSE

the configuration startup sequence
waits in the specified cycle until the
DCM locks.

CLK_FEEDBACK Attribute

The CLK_FEEDBACK attribute determines the type of feedback applied to the CLKFB.
The possible values are 1X or NONE. The default value is 1X. When this attribute is set to
1X, the CLKFB pin must be driven by CLKO. When this attribute is set to NONE, the
CLKFB pin must be unconnected.

66

www.Xxilinx.com

Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

2:)(||_|NX® DCM Attributes

CLKDV_DIVIDE Attribute

The CLKDV_DIVIDE attribute controls the CLKDV frequency. The source clock frequency
is divided by the value of this attribute. The possible values for CLKDV_DIVIDE are: 1.5,
2,25,3,35,4,45,5,55,6,65,7,7.5,8,9,10, 11,12, 13, 14, 15, or 16. The default value is 2.
In the low frequency mode, any CLKDV_DIVIDE value produces a CLKDV output with a
50/50 duty-cycle. In the high frequency mode, the CLKDV_DIVIDE value must be set to
an integer value to produce a CLKDV output with a 50/50 duty-cycle. For non-integer
CLKDV_DIVIDE values, the CLKDV output duty cycle is shown in Table 2-7.

Table 2-7: Non-Integer CLKDV_DIVIDE

CLKDV Duty Cycle in
CLKDV_DIVIDE Value High Frequency Mode
(High Pulse/Low Pulse Value)
1.5 1/3
2.5 2/5
3.5 3/7
4.5 4/9
5.5 5/11
6.5 6/13
7.5 7/15

CLKFX_MULTIPLY and CLKFX_DIVIDE Attributes

The CLKEX_MULTIPLY attribute sets the multiply value (M) of the CLKFX output. The
CLKFX_DIVIDE attribute sets the divisor (D) value of the CLKFX output. Both control the
CLKFX output making the CLKFX frequency equal the effective CLKIN (source clock)
frequency multiplied by M/D. The possible values for M are any integer from 2 to 32. The
possible values for D are any integer from 1 to 32. The default settingsare M =4and D = 1.

CLKIN_DIVIDE_BY_2 Attribute

The CLKIN_DIVIDE_BY_2 attribute is used to enable a toggle flip-flop in the input clock
path to the DCM. When set to FALSE, the effective CLKIN frequency of the DCM equals
the source clock frequency driving the CLKIN input. When set to TRUE, the CLKIN
frequency is divided by two before it reaches the rest of the DCM. Thus, the DCM sees half
the frequency applied to the CLKIN input and operates based on this frequency. For
example, if a 100 MHz clock drives CLKIN, and CLKIN_DIVIDE_BY_2 is set to TRUE;
then the effective CLKIN frequency is 50 MHz. Thus, CLKO output is 50 MHz and CLK2X
output is 100 MHz. The effective CLKIN frequency must be used to evaluate any operation
or specification derived from CLKIN frequency. The possible values for
CLKIN_DIVIDE_BY_2 are TRUE and FALSE. The default value is FALSE.

CLKIN_PERIOD Attribute

The CLKIN_PERIOD attribute specifies the source clock period (in nanoseconds). The
default value is 0.0 ns.

Virtex-4 FPGA User Guide www.Xxilinx.com 67
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 2: Digital Clock Managers (DCMs) i:)("JNX®

CLKOUT_PHASE_SHIFT Attribute

The CLKOUT_PHASE_SHIFT attribute indicates the mode of the phase shift applied to the
DCM outputs. The possible values are NONE, FIXED, VARIABLE_POSITIVE,
VARIABLE_CENTER, or DIRECT. The default value is NONE.

When set to NONE, a phase shift cannot be performed and a phase-shift value has no effect
on the DCM outputs. When set to FIXED, the DCM outputs are phase-shifted by a fixed
phase from the CLKIN. The phase-shift value is determined by the PHASE_SHIFT
attribute. If the CLKOUT_PHASE_SHIFT attribute is set to FIXED or NONE, then the
PSEN, PSINCDEC, and the PSCLK inputs must be tied to ground.

When set to VARIABLE_POSITIVE, the DCM outputs can be phase-shifted in variable
mode in the positive range with respect to CLKIN. When set to VARIABLE_CENTER, the
DCM outputs can be phase-shifted in variable mode, in the positive and negative range
with respect to CLKIN. If set to VARIABLE_POSITIVE or VARIABLE_CENTER, each
phase-shift increment (or decrement) will increase (or decrease) the phase shift by a period
of 1/256 x CLKIN period.

When set to DIRECT, the DCM output can be phase-shifted in variable mode in the
positive range with respect to CLKIN. Each phase-shift increment/decrement will
increase/decrease the phase shift by one DCM_TAP (see the Virtex-4 Data Sheet).

The starting phase in the VARIABLE_POSITIVE and VARIABLE_CENTER modes is
determined by the phase-shift value. The starting phase in the DIRECT mode is always
zero, regardless of the value specified by the PHASE_SHIFT attribute. Thus, the
PHASE_SHIFT attribute should be set to zero when DIRECT mode is used. A non-zero
phase-shift value for DIRECT mode can be loaded to the DCM using Dynamic
Reconfiguration Ports in the Virtex-4 Confiquration Guide.

DCM_AUTOCALIBRATION Attribute

The autocalibration block protects the DCM from the effects of negative bias temperature
instability (NBTI). This attribute cannot be set to FALSE unless the user guarantees that
CLKIN and CLKFB (if external feedback is used) never stop. The macro can also be
disabled if the user can guarantee that DCM is held in reset when the clocks are stopped. If
this attribute is set to FALSE, the reset requirement is three clock cycles.

DCM_PERFORMANCE_MODE Attribute

The DCM_PERFORMANCE_MODE attribute allows the choice of optimizing the DCM
either for high frequency and low jitter or for low frequency and a wide phase-shift range.
The attribute values are MAX_SPEED and MAX_RANGE. The default value is
MAX_SPEED. When set to MAX_SPEED, the DCM is optimized to produce high
frequency clocks with low jitter. However, the phase-shift range is smaller than when
MAX_RANGE is selected. When set to MAX_RANGE, the DCM is optimized to produce
low frequency clocks with a wider phase-shift range. The DCM_PERFORMANCE_MODE
affects the following specifications: DCM input and output frequency range, phase-shift
range, output jitter, DCM_TAP, CLKIN_CLKFB_PHASE, CLKOUT_PHASE, and duty-
cycle precision. The Virtex-4 Data Sheet specifies these values.

For most cases, the DCM_PERFORMANCE_MODE attribute should be set to
MAX_SPEED (default). Consider changing to MAX_RANGE only in these situations:

e The frequency needs to be below the low frequency limit of the MAX_SPEED setting.

e A greater absolute phase-shift range is required.

68

www.Xxilinx.com Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com/support/documentation/data_sheets/ds302.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds302.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds302.pdf
http://www.xilinx.com

2:)(||_|NX® DCM Attributes

DESKEW_ADJUST Attribute

The DESKEW_ADJUST attribute affects the amount of delay in the feedback path. The
possible values are SYSTEM_SYNCHRONOUS, SOURCE_SYNCHRONOUS,
0,1,2,3, ..., or 31. The default value is SYSTEM_SYNCHRONOUS.

For most designs, the default value is appropriate. In a source-synchronous design, set this
attribute to SOURCE_SYNCHRONOUS. The remaining values should only be used after
consulting with Xilinx. For more information consult the “Source-Synchronous
Setting”section.

DFS_FREQUENCY_MODE Attribute

The DFS_FREQUENCY_MODE attribute specifies the frequency mode of the digital
frequency synthesizer (DFS). The possible values are LOW and HIGH. The default value is
LOW. The frequency ranges for both frequency modes are specified in the Virtex-4 Data
Sheet. DFS_FREQUENCY_MODE determines the frequency range of CLKIN, CLKFX, and
CLKFX180.

DLL_FREQUENCY_MODE Attribute

The DLL_FREQUENCY_MODE attribute specifies either the HIGH or LOW frequency
mode of the delay-locked loop (DLL). The default value is LOW. The frequency ranges for
both frequency modes are specified in the Virtex-4 Data Sheet.

DUTY_CYCLE_CORRECTION Attribute

The DUTY_CYCLE_CORRECTION attribute controls the duty cycle correction of the 1x
clock outputs: CLKO, CLK90, CLK180, and CLK270. The possible values are TRUE and
FALSE. The default value is TRUE. When set to TRUE, the 1x clock outputs are duty cycle
corrected to be within specified limits (see the Virtex-4 Data Sheet for details). It is strongly
recommended to always set the DUTY_CYCLE_CORRECTION attribute to TRUE. Setting
this attribute to FALSE does not necessarily produce output clocks with the same duty
cycle as the source clock.

FACTORY_JF Attribute

The Factory_JF attribute affects the DCMs jitter filter characteristics. This attribute controls
the DCM tap update rate. Factory_JF must be set to a specific value depending on the
DLL_FREQUENCY_MODE setting. The default value is FOF0 corresponding to
DLL_FREQUENCY_MODE = LOW (default). Factory_JF must be manually set to FOF0
when DLL_FREQUENCY_MODE = HIGH. The ISE® software tool will issue a warning if
FACTORY_JF is not set as stated.

PHASE_SHIFT Attribute

The PHASE_SHIFT attribute determines the amount of phase shift applied to the DCM
outputs. This attribute can be used in both fixed or variable phase-shift mode. If used with
variable mode, the attribute sets the starting phase shift. When

CLKOUT_PHASE_SHIFT = VARIABLE_POSITIVE, the PHASE_SHIFT value range is 0 to
255. When CLKOUT_PHASE_SHIFT = VARIABLE_CENTER or FIXED, the
PHASE_SHIFT value range is 255 to 255. When CLKOUT_PHASE_SHIFT = DIRECT, the
PHASE_SHIFT value range is 0 to 1023. The default value is 0.

Virtex-4 FPGA User Guide www.Xxilinx.com 69
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com/support/documentation/data_sheets/ds302.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds302.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds302.pdf
http://www.xilinx.com

Chapter 2: Digital Clock Managers (DCMs) i:)("JNX®

Refer to “Phase Shifting,” page 76 for information on the phase-shifting operation and its
relationship with the CLKOUT_PHASE_SHIFT and PHASE_SHIFT attributes.

STARTUP_WAIT Attribute

The STARTUP_WAIT attribute determines whether the DCM waits in one of the startup
cycles for the DCM to lock. The possible values for this attribute are TRUE and FALSE. The
default value is FALSE. When STARTUP_WAIT is set to TRUE, and the LCK_cycle BitGen
option is used, then the configuration startup sequence waits in the startup cycle specified
by LCK_cycle until the DCM is locked.

DCM Design Guidelines

This section provides a detailed guidelines on using the Virtex-4 FPGA DCM.

Clock Deskew

The Virtex-4 FPGA DCM offers a fully digital, dedicated, on-chip clock deskew. The
deskew feature provides zero propagation delay between the source clock and output
clock, low clock skew among output clock signals distributed throughout the device, and
advanced clock domain control.

The deskew feature also functions as a clock mirror of a board-level clock serving multiple
devices. This is achieved by driving the CLKO output off-chip to the board (and to other
devices on the board) and then bringing the clock back in as a feedback clock. See the
“Application Examples” section. Taking advantage of the deskew feature greatly
simplifies and improves system-level design involving high-fanout, high-performance
clocks.

Clock Deskew Operation

The deskew feature utilizes the DLL circuit in the DCM. In its simplest form, the DLL
consists of a single variable delay line (containing individual small delay elements or
buffers) and control logic. The incoming clock drives the delay line. The output of every
delay element represents a version of the incoming clock (CLKIN) delayed at a different
point. The clock distribution network routes the clock to all internal registers and to the
clock feedback CLKFB pin. The control logic contains a phase detector and a delay-line
selector. The phase detector compares the incoming clock signal (CLKIN) against a
feedback input (CLKFB) and steers the delay-line selector, essentially adding delay to the
DCM output until the CLKIN and CLKFB coincide, putting the two clocks 360° out-of-
phase, (thus, in phase). When the edges from the input clock line up with the edges from
the feedback clock, the DCM achieves a lock. The two clocks have no discernible
difference. Thus, the DCM output clock compensates for the delay in the clock distribution
network, effectively removing the delay between the source clock and its loads. The size of
each intrinsic delay element is a DCM_TAP (see the AC Characteristics table in the Virtex-4
Data Sheet). Figure 2-3 illustrates a simplified DLL circuit.

70 www.Xxilinx.com Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com/support/documentation/data_sheets/ds302.pdf
http://www.xilinx.com

2:)(||_|NX® DCM Design Guidelines

Clock
Distribution
Network

Variable CLKOUT
| N
Delay Line

UG070_2_03_060508

Figure 2-3: Simplified DLL Circuit

CLKIN

CLKFB

To provide the correct clock deskew, the DCM depends on the dedicated routing and
resources used at the clock source and feedback input. An additional delay element (see
“Deskew Adjust”) is available to compensate for the clock source or feedback path. The ISE
tools analyze the routing around the DCM to determine if a delay must be inserted to
compensate for the clock source or feedback path. Thus, using dedicated routing is
required to achieve predictable deskew. All nine DCM output clocks are deskewed when
the CLKFB pin is used.

Input Clock Requirements

The clock input of the DCM can be driven either by an IBUFG/IBUFGDS, IBUF,
BUFGMUYX, or a BUFGCNTL. Since there is no dedicated routing between an IBUF and a
DCM clock input, using an IBUF causes additional input delay that is not compensated by
the DCM.

The DCM output clock signal is essentially a delayed version of the input clock signal. It
reflects any instability on the input clock in the output waveform. The DCM input clock
requirements are specified in the Virtex-4 Data Sheet.

Once locked, the DCM can tolerate input clock period variations of up to the value
specified by CLKIN_PER_JITT_DLL_HEF (at high frequencies) or
CLKIN_PER_JITT_DLL_LF (at low frequencies). Larger jitter (period changes) can cause
the DCM to lose lock, indicated by the LOCKED output deasserting. The user must then
reset the DCM. The cycle-to-cycle input jitter must be kept to less than
CLKIN_CYC_JITT_DLL_LF in the low frequencies and CLKIN_CYC_JITT_DLL_HF for
the high frequencies.

Input Clock Changes

Changing the period of the input clock beyond the maximum input period jitter
specification requires a manual reset of the DCM. Failure to reset the DCM produces an
unreliable LOCKED signal and output clock. It is possible to temporarily stop the input
clock and feedback clock with little impact to the deskew circuit, as long as CLKFX or
CLKFX180 is not used.

If the input clock is stopped and CLKFX or CLKFX180 is used, the CLKFX or CLKFX180
outputs might stop toggling, and DO[2] (CLKFX Stopped) is asserted. The DCM must be
reset to recover from this event.

The DOJ[2] CLKEX stopped status is asserted in 257 to 260 CLKIN cycles after CLKFX is
stopped. CLKEX does not resume and DO[2] will not deassert until the DCM is reset.

In any other case, the clock should not be stopped for more than 100 ms to minimize the
effect of device cooling; otherwise, the tap delays might change. The clock should be
stopped during a Low or a High phase, and must be restored with the same input clock
period/frequency. During this time, LOCKED stays High and remains High when the

Virtex-4 FPGA User Guide www.Xxilinx.com 71
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com/support/documentation/data_sheets/ds302.pdf
http://www.xilinx.com

Chapter 2: Digital Clock Managers (DCMs) XX"JNX@

clock is restored. Thus, a High on LOCKED does not necessarily mean that a valid clock is
available.

When stopping the input clock (CLKIN remains High or Low for one or more clock cycles),
one to nine more output clock cycles are still generated as the delay line is flushed. When
the output clock stops, the CLKIN stopped (DO[1]) signal is asserted. When the clock is
restarted, the output clock cycles are not generated for one to eight clocks while the delay
line is filled. Similarly, the DO[1] signal is deasserted once the output clock is generated.
The most common case is two or three clocks. CLKIN can be restarted with any phase
relationship to the previous clock. If the frequency has changed, the DCM requires a reset.
The DOJ1] is forced Low whenever LOCKED is Low. When the DCM is in the locking
process, DO[1] status is held Low until LOCKED is achieved.

Output Clocks

Any or all of the DCM’s nine clock outputs can be used to drive a global clock network.
The fully-buffered global clock distribution network minimizes clock skew caused by
loading differences. By monitoring a sample of the output clock (CLKO), the deskew circuit
compensates for the delay on the routing network, effectively eliminating the delay from
the external input port to the individual clock loads within the device.

All DCM outputs can drive general interconnect; however, these connections are not
suitable for critical clock signals. It is recommended that all clock signals should be within
the global or regional clock network. Refer to Chapter 1, “Clock Resources” for more
information on using clock networks.

Output pin connectivity carries some restrictions. The DCM clock outputs can each drive
an OBUE a global clock buffer BUFGCTRL, or they can route directly to the clock input of
a synchronous element. To use dedicated routing, the DCM clock outputs must drive

BUFGCTRLSs on the same top or bottom half of the device. If the DCM and BUFGCTRL are
not on the same top or bottom half, local routing is used and the DCM might not deskew

properly.
Do not use the DCM output clock signals until after activation of the LOCKED signal. Prior
to the activation of the LOCKED signal, the DCM output clocks are not valid.

DCM During Configuration and Startup

During the FPGA configuration, the DCM is in reset and starts to lock at the beginning of
the startup sequence. A DCM requires both CLKIN and CLKFB input clocks to be present
and stable when the DCM begins to lock. If the device enters the configuration startup
sequence without an input clock, or with an unstable input clock, then the DCM must be
reset after configuration with a stable clock.

The following startup cycle dependencies are of note:

1. The default value is -g LCK_cycle:NoWait. When this setting is used, the startup
sequence does not wait for the DCM to lock. WHen the LCK_cycle is set to other
values, the configuration startup remains in the specified startup cycle until the DCM
is locked.

2. Before setting the LCK_cycle option to a startup cycle in BitGen, the DCM’s
STARTUP_WAIT attribute must be set to TRUE.

3. If the startup sequence is altered (by using the BitGen option), do not place the
LCK_cycle (wait for the DCM to lock) before the GTS_cycle (deassert GTS). Incorrect
implementation will result in the DCM not locking and an incomplete configuration.

72

www.Xxilinx.com Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

2:)(||_|NX® DCM Design Guidelines

Deskew Adjust

The DESKEW_ADJUST attribute sets the value for a configurable, variable-tap delay
element to control the amount of delay added to the DCM feedback path (see Figure 2-4).

Data Input

‘? Veco
—
Into the
% b Q FPGA

CLK -, T T T T T T T T T | B
Source |BUFG : DCM [
N |
& L CLKIN CLKO |
: CLKFB |
| DCM |
| 1 Power] IVCCAUX I
| Regulator |
| |
| /_ N\ |
| |
| . QJ.Q \ |
| |
| Feedback Tap Delays I
System-Synchronous Source-Synchronous
Default Setting Setting (Delay set to zero)
VeonT

UG070_2_04_060608

Figure 2-4: DCM and Feedback Tap-Delay Elements

This delay element allows adjustment of the effective clock delay between the clock source
and CLKO to guarantee non-positive hold times of IOB input flip-flop in the device.
Adding more delay to the DCM feedback path decreases the effective delay of the actual
clock path from the FPGA clock input pin to the clock input of any flip-flop. Decreasing the
clock delay increases the setup time represented in the input flip-flop, and reduces any
positive hold times required. The clock path delay includes the delay through the IBUFG,
route, DCM, BUFG, and clock-tree to the destination flip-flop. If the feedback delay equals
the clock-path delay, the effective clock-path delay is zero.

System-Synchronous Setting (Default)

By default, the feedback delay is set to system-synchronous mode. The primary timing
requirements for a system-synchronous system are non-positive hold times (or minimally
positive hold times) and minimal clock-to-out and setup times. Faster clock-to-out and
setup times allow shorter system clock periods. Ideally, the purpose of a DLL is to zero-out
the clock delay to produce faster clock-to-out and non-positive hold times. The system-
synchronous setting (default) for DESKEW_ADJUST configures the feedback delay
element to guarantee non-positive hold times for all input IOB registers. The exact delay
number added to the feedback path is device size dependent. This is determined by
characterization. In the timing report, this is included as timing reduction to input clock
path represented by the Tpcpvno parameter. As shown in Figure 2-4, the feedback path
includes tap delays in the default setting (red line). The pin-to-pin timing parameters (with
DCM) on the Virtex-4 Data Sheet reflects the setup/hold and clock-to-out times when the
DCM is in system-synchronous mode.

Virtex-4 FPGA User Guide www.Xxilinx.com 73
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com/support/documentation/data_sheets/ds302.pdf
http://www.xilinx.com

Chapter 2: Digital Clock Managers (DCMs) i:)("JNX®

In some situations, the DCM does not add this extra delay, and the DESKEW_ADJUST
parameter has no effect. BitGen selects the appropriate DCM tap settings. These situations
include:

e downstream DCMs when two or more DCMs are cascaded
e DCMs with external feedback
¢ DCMs with an external CLKIN that does not come from a dedicated clock input pin

Source-Synchronous Setting

When DESKEW_ADJUST is set to source-synchronous mode, the DCM feedback delay
element is set to zero. As shown in Figure 2-4, in source-synchronous mode, the DCM
clock feedback delay element is set to minimize the sampling window. This results in a
more positive hold time and a longer clock-to-out compared to system-synchronous mode.
The source-synchronous switching characteristics section in the Virtex-4 Data Sheet reflects
the various timing parameters for the source-synchronous design when the DCM is in
source-synchronous mode.

Characteristics of the Deskew Circuit

e Eliminate clock distribution delay by effectively adding one clock period delay.
Clocks are deskewed to within CLKOUT_PHASE, specified in the Virtex-4 Data Sheet.

¢ Eliminate on-chip as well as off-chip clock delay.
¢ No restrictions on the delay in the feedback clock path.
e Requires a continuously running input clock.

e Adapts to a wide range of frequencies. However, once locked to a frequency, large
input frequency variations are not tolerated.

¢ Does not eliminate jitter. The deskew circuit output jitter is the accumulation of input
jitter and any added jitter value due to the deskew circuit.

e The completion of configuration can be delayed until after DCM locks to guarantee
the system clock is established prior to initiating the device.

Cascading DCMs

Xilinx does not recommend cascading DCMs because jitter accumulates as a result—in
other words, the output clock jitter of the second-stage DCM is worse than the output clock
jitter of the first-stage DCM. If possible, use two DCMs in parallel instead of in series.

If it is absolutely necessary to cascade DCMs, the following rules must be observed:

¢ The outputjitter specifications for DLL outputs are provided in the data sheet. Use the
Jitter Calculator to determine the jitter for CLKFX. If possible, avoid cascading CLKFX
to CLKFX in high-frequency mode. In general, jitter accumulates based on the
following equation:

Total Jitter = «/ (Jitterl)2 + (Jitter2)2

e The input and output frequency and jitter specifications for each DCM must be met. If
the frequency of the DCM inputs allows it, use feedback for both DCMs.

e Use the LOCKED output from DCM1 to create a Reset for DCM2. The recommended
length of a Reset pulse is 200ms. The LOCKED signal from DCM1 should be inverted
and provide the Reset input to DCM2. Connect the output of DCM1 to CLKIN of
DCM2 through a BUFGCTRL. CLKIN and the DCM output clock (CLKDV in this
case) feed a BUFGCTRL acting as an asynchronous mux. When DCM1 is in reset and

74

www.Xxilinx.com Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com/support/documentation/data_sheets/ds302.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds302.pdf
http://www.xilinx.com

SOXILINX®

DCM Design Guidelines

while acquiring LOCK the CLKIN clock feeds DCM2. After the DCM1 locks the
DCM1 output clock feeds DCM2. DCM2 is held in reset for 16 additional CLKIN
cycles. Figure 2-5 illustrates this approach.

BUFG BUFG

d d

CLKIN CLKIN CLKO — CLKIN CLKO
BUFCTRL
DCM1 N ote (1) DCM2 BUEG
0 CLKFB
CLKFB CLKDV |1S L CLKFX CLKFX
Reset RST LOCKED — RST LOCKED —— LOCK
INV SRL16
D Qf—
,— CLK
UG070_02_23_031308

1. This is an asynchronous clock mux as shown in Figure 1-13, page 36.

Figure 2-5: Cascading DCMs

e Itisrecommended that R1 > R2, where:

R1 = M/D ratio for DCM1
R2 = M/D ratio for DCM2

The ranges of M and D values are given in the data sheet.

Frequency Synthesis

The DCM provides several flexible methods for generating new clock frequencies. Each
method has a different operating frequency range and different AC characteristics. The
CLK2X and CLK2X180 outputs double the clock frequency. The CLKDV output provides a
divided output clock (lower frequency) with division options of 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5,
5.5,6,6.5,7,75,8,9,10,11, 12,13, 14, 15, and 16.

The DCM also offers fully digital, dedicated frequency-synthesizer outputs CLKFX and its
opposite phase CLKFX180. The output frequency can be any function of the input clock
frequency described by M + D, where M is the multiplier (numerator) and D is the divisor
(denominator).

The frequency synthesized outputs can drive the global-clock routing networks within the
device. The well-buffered global-clock distribution network minimizes clock skew due to
differences in distance or loading.

Frequency Synthesis Operation

The DCM clock output CLKFX is any M + D factor of the clock input to the DCM.
Specifications for M and D, as well as input and output frequency ranges for the frequency
synthesizer, are provided in the Virtex-4 Data Sheet.

Only when feedback is provided to the CLKFB input of the DCM is the frequency
synthesizer output phase aligned to the clock output, CLKO.

The internal operation of the frequency synthesizer is complex and beyond the scope of
this document. As long as the frequency synthesizer is within the range specified in the

Virtex-4 FPGA User Guide

www.Xxilinx.com 75

UGO070 (v2.6) December 1, 2008

http://www.xilinx.com/support/documentation/data_sheets/ds302.pdf
http://www.xilinx.com

Chapter 2: Digital Clock Managers (DCMs) i:)("JNX®

Virtex-4 Data Sheet, it multiplies the incoming frequencies by the pre-calculated quotient
M =+ D and generates the correct output frequencies.

For example, assume an input frequency of 50 MHz, M = 25, and D = 8 (M and D values do
not have common factors and cannot be reduced). The output frequency is 156.25 MHz
although separate calculations, 25 x 50 MHz = 1.25 GHz and 50 MHz + 8 = 6.25 MHz,
seem to produce separate values outside the range of the input frequency.

Frequency Synthesizer Characteristics

o The frequency synthesizer provides an output frequency equal to the input frequency
multiplied by M and divided by D.

e The outputs CLKFX and CLKFX180 always have a 50/50 duty-cycle.

¢ Smaller M and D values achieve faster lock times. Whenever possible, divide M and D
by the largest common factor to get the smallest values. (e.g., if the required
CLKFX =9/6 x CLKIN, instead of usingM =9and D=6,use M =3 and D = 2.)

e When CLKFB is connected, CLKFX is phase aligned with CLKO every D cycles of
CLKO and every M cycles of CLKFX if M/D is a reduced fraction.

e In the case where only the DFS outputs are used (CLKFB is not connected) and the
CLKIN of the DCM is outside the range of the DLL outputs, the
DCM_AUTOCALIBRATION attribute must be set to FALSE and the CONFIG
STEPPING constraint set to the proper production stepping level.

e Inthe case where only DFS outputs are used, and when CLKIN of the DCM is outside
of the range for DLL outputs, a macro must be used to properly monitor the LOCKED
signal. Verilog and VHDL versions of the macro can be downloaded from
https:/ /secure.xilinx.com /webreg / clickthrough.do?cid=30163.

Note: This macro is not required for Step 1 and later XC4VLX and XC4VSX devices and SCD1
and later XC4VFX devices.

Phase Shifting

The DCM provides coarse and fine-grained phase shifting. For coarse-phase control, the
CLKO, CLK90, CLK180, and CLK270 outputs are each phase-shifted by % of the input clock
period relative to each other. Similarly, CLK2X180 and CLKFX180 provide a 180° coarse
phase shift of CLK2X and CLKEFX, respectively. The coarse phase-shifted clocks are
produced from the delay lines of the DLL circuit. The phase relationship of these clocks is
retained when CLKFB is not connected.

Fine-grained phase shifting uses the CLKOUT_PHASE_SHIFT and PHASE_SHIFT
attributes to phase-shift DCM output clocks relative to CLKIN. Since the CLKIN is used as
the reference clock, the feedback (CLKFB) connection is required for the phase-shifting
circuit to compare the incoming clock with the phase-shifted clock. The rest of this section
describes fine-grained phase shifting in the Virtex-4 FPGA DCM.

Phase-Shifting Operation

All nine DCM output clocks are adjusted when fine-grained phase shifting is activated.
The phase shift between the rising edges of CLKIN and CLKFB is a specified fraction of the
input clock period or a specific amount of DCM_TAP. All other DCM output clocks retain
their phase relation to CLKO.

76

www.Xxilinx.com Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com/support/documentation/data_sheets/ds302.pdf
http://www.xilinx.com
https://secure.xilinx.com/webreg/clickthrough.do?cid=30163

SOXILINX®

DCM Design Guidelines

Phase-Shift Range

The allowed phase shift between CLKIN and CLKEFB is limited by the phase-shift range.
There are two separate phase-shift range components:

e PHASE_SHIFT attribute range
e FINE_SHIFT_RANGE DCM timing parameter range

In the FIXED, VARIABLE_POSITIVE, and VARIABLE_CENTER phase-shift mode, the
PHASE_SHIFT attribute is in the numerator of the following equation:

Phase Shift (ns) = (PHASE_SHIFT/256) x PERIOD¢[1N
where PERIODy N denotes the effective CLKIN frequency.

In VARIABLE_CENTER and FIXED modes, the full range of the PHASE_SHIFT attribute is
always —255 to +255. In the VARIABLE_POSITIVE mode, the range of the PHASE_SHIFT
attribute is 0 to +255.

In the DIRECT phase-shift mode, the PHASE_SHIFT attribute is the multiplication factor
in the following equation:

Phase Shift (ns) = PHASE_SHIFT x DCM_TAP
In DIRECT modes, the full range of the PHASE_SHIFT attribute is 0 to 1023.

The FINE_SHIFT_RANGE component represents the total delay achievable by the phase-
shift delay line. Total delay is a function of the number of delay taps used in the circuit. The
absolute range is specified in the DCM Timing Parameters section of the Virtex-4 Data Sheet
across process, voltage, and temperature. The different absolute ranges are outlined in this
section.

The fixed mode allows the DCM to insert a delay line in the CLKFB or the CLKIN path.
This gives access to the +FINE_SHIFT_RANGE when the PHASE_SHIFT attribute is set to
a positive value, and -FINE_SHIFT_RANGE when the PHASE_SHIFT attribute is set to a
negative value.

Absolute Range (Variable-Center Mode) = + FINE_SHIFT_RANGE + 2

The variable-center mode allows symmetric, dynamic sweeps from —255/256 to +255/256,
by having the DCM set the zero-phase-skew point in the middle of the delay line. This
divides the total delay-line range in half.

Absolute Range (Fixed) = + FINE_SHIFT_RANGE

In the fixed mode, a phase shift is set during configuration in the range of —255/256 to
+255/256.

Absolute Range (Variable-Positive and Direct Modes) = + FINE_SHIFT_RANGE

In the variable-positive and direct modes, the phase-shift only operates in the positive
range. The DCM sets the zero-phase-skew point at the beginning of the delay line. This
produces a full delay line in one direction.

Both the PHASE_SHIFT attribute and the FINE_SHIFT_RANGE parameter need to be
considered to determine the limiting range of each application. The “Phase-Shift
Examples” section illustrates possible scenarios.

In variable and direct mode, the PHASE_SHIFT value can dynamically increment or
decrement as determined by PSINCDEC synchronously to PSCLK, when the PSEN input
is active.

Virtex-4 FPGA User Guide www.Xxilinx.com 77
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com/bvdocs/publications/ds302.pdf
http://www.xilinx.com

Chapter 2: Digital Clock Managers (DCMs) 2:)(||_|NX®

Phase-Shift Examples

The following usage examples take both the PHASE_SHIFT attribute and the
FINE_SHIFT_RANGE components into consideration:

e If PERIODCLKIN = 2 x FINE_SHIFT_RANGE, then the PHASE_SHIFT in fixed mode
is limited to +128. In variable-positive mode, PHASE_SHIFT is limited to +128. In
variable-center mode the PHASE_SHIFT is limited to +64.

e If PERIODCLKIN = FINE_SHIFT_RANGE, then the PHASE_SHIFT in variable-
positive mode is limited to +255. In fixed and variable-center mode the
PHASE_SHIFT is limited to +255.

e If PERIODCLKIN < FINE_SHIFT_RANGE, then the PHASE_SHIFT in variable-
positive mode is limited to +255. In fixed and variable-center mode the
PHASE_SHIFT is limited to +255.

e For all previously described cases, the direct mode is always limited to +1023.

If the phase shift is limited by the FINE_SHIFT_RANGE, use the coarse-grained phase
shift to extend the phase-shift range or set DCM_PERFORAMANCE_MODE attribute to
MAX_RANGE to increase the FINE_SHIFT_RANGE. Figure 2-6 illustrates using CLK90,
CLK180, and CLK270 outputs assuming FINE_SHIFT_RANGE = 10 ns.

For frequency > 100 MHz (period < 10 ns) 10ns 10ns 10ns 10ns

CLKO PHASE_SHIFT = 0 - 255 covers the
whole range of period. CLKO(100 MHz) E

For frequency between 50 - 100 MHz
(period 10 - 20 ns). At 50 MHz, use
CLKO PHASE_SHIFT= 0 - 127 for the
first 10 ns.

CLKO(50 MHZ)E—l
Use CLK180 with PHASE_SHIFT=0 - 127
for the next 10 ns.
CLK1805OMHZ) |]

For frequency between 25 - 50 MHz
(period 20 - 40 ns). At 25 MHz, use
CLKO PHASE_SHIFT=0 - 63 for the
first 10 ns.

CLKO(25 MHz) | | |
Use CLK90 with PHASE_SHIFT=0 - 63

for the next 10 ns. CLK90(25 MHz) _— |

Use CLK180 with PHASE_SHIFT=0 - 63
for the next 10 ns. CLK180(25 MHz) —— |

Use CLK270 with PHASE_SHIFT=0- 63 | CLK270(25 MHz) | ——

for the last 10 ns.

UG070_2_05_031208

Figure 2-6: Fixed Phase-Shift Examples

In variable mode, the phase-shift factor is changed by activating PSEN for one period of
PSCLK. At the PSCLK clock cycle where PSEN is activated, the level of PSINCDEC input
determines whether the phase-shift increases or decreases. A High on PSINCDEC
increases the phase shift, and a Low decreases the phase shift.

After the deskew circuit increments or decrements, the signal PSDONE is asserted High
for a single PSCLK cycle. This allows the next change to be performed.

The user interface and the physical implementation are different. The user interface
describes the phase shift as a fraction of the clock period (N/256). The physical
implementation adds the appropriate number of buffer stages (each DCM_TAP) to the
clock delay. The DCM_TAP granularity limits the phase resolution at higher clock
frequencies.

78

www.Xxilinx.com Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

SOXILINX®

DCM Design Guidelines

All phase-shift modes, with the exception of DIRECT mode, are temperature and voltage
adjusted. Hence, a V¢ or temperature adjustment will not change the phase shift. The
DIRECT phase shift is not temperature or voltage adjusted since it directly controls
DCM_TAP. Changing the ratio of V¢ /temperature results in a phase-shift change
proportional to the size of the DCM_TAP at the specific voltage and temperature.

Interaction of PSEN, PSINCDEC, PSCLK, and PSDONE

The variable and direct phase-shift modes are controlled by the PSEN, PSINCDEC,
PSCLK, and PSDONE ports. In addition, a phase-shift overflow (DO[0]) status indicates
when the phase-shift counter has reached the end of the phase-shift delay line or the
maximum value (£255 for variable mode, +1023 for direct mode).

After the DCM locks, the initial phase in the VARIABLE_POSITIVE and
VARIABLE_CENTER modes is determined by the PHASE_SHIFT value. The initial phase
in the DIRECT mode is always 0, regardless of the value specified by the PHASE_SHIFT
attribute The non-zero PHASE_SHIFT value for DIRECT mode can only be loaded to the
DCM when a specific “load phase shift value” command is given by Dynamic
Reconfiguration. Refer to the “Techniques” section in the Virtex-4 Configuration Guide for
more information. The phase of DCM output clock will be incremented /decremented
according to the interaction of PSEN, PSINCDEC, PSCLK, and PSDONE from the initial or
dynamically reconfigured phase.

PSEN, PSINCDEC, and PSDONE are synchronous to PSCLK. When PSEN is asserted for
one PSCLK clock period, a phase-shift increment/decrement is initiated. When
PSINCDEC is High, an increment is initiated and when PSINCDEC is Low, a decrement is
initiated. Each increment adds to the phase shift of DCM clock outputs by 1/256 of the
CLKIN period. Similarly, each decrement decreases the phase shift by 1/256 of the CLKIN
period. PSEN must be active for exactly one PSCLK period; otherwise, a single phase-shift
increment/decrement is not guaranteed. PSDONE is High for exactly one clock period
when the phase shift is complete. The time required to complete a phase-shift operation
varies. As a result, PSDONE must be monitored for phase-shift status. Between enabling
PSEN and PSDONE is flagged, the DCM output clocks will gradually change from their
original phase shift to the incremented /decremented phase shift. The completion of the
increment or decrement is signaled when PSDONE asserts High. After PSDONE has
pulsed High, another increment/decrement can be initiated.

Figure 2-7 illustrates the interaction of phase-shift ports.

When PSEN is activated after the phase-shift counter has reached the maximum value of
PHASE_SHIFT, the PSDONE will still be pulsed High for one PSCLK period some time
after the PSEN is activated (as illustrated in Figure 2-7). However, the phase-shift overflow
pin, STATUS(0), or DO(0) will be High to flag this condition, and no phase adjustment is
performed.

Virtex-4 FPGA User Guide www.Xxilinx.com 79
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 2: Digital Clock Managers (DCMs) i:)("JNX®

smnhniihnhinphihs

PSEN 2
(C

PSDONE)
C

wsweoee /X XTI LTI

UG070_2_06_031208

Figure 2-7: Phase-Shift Timing Diagram

Phase-Shift Overflow

The phase-shift overflow (DOJ0]) status signal is asserted when either of the following
conditions are true.

The DCM is phase-shifted beyond the allowed phase-shift value. In this case, the phase-
shift overflow signal will be asserted High when the phase shift is decremented beyond -
255 and incremented beyond +255 for VARIABLE_CENTER mode, incremented beyond
+255 for VARIABLE_POSITIVE mode, or decremented beyond 0 and incremented beyond
1023 for DIRECT mode.

The DCM is phase-shifted beyond the absolute range of the phase-shift delay line. In this
case, the phase-shift overflow signal will be assert High when the phase-shift in time (ns)
exceeds the =FINE_SHIFT_RANGE/2 in the VARIABLE_CENTER mode, the
+FINE_SHIFT_RANGE in the VARIABLE_POSITIVE mode, or exceeds 0 to
+FINE_SHIFT_RANGE in the DIRECT mode. The phase-shift overflow signal can toggle
once it is asserted. The condition determining if the delay line is exceeded is calibrated
dynamically. Therefore, at the boundary of exceeding the delay line, it is possible for the
phase-shift overflow signal to assert and de-assert without a change in phase shift. Once
asserted, it will remain asserted for at least 40 CLKIN cycles. If the DCM is operating near
the FINE_SHIFT_RANGE limit, do not use the phase-shift overflow signal as a flag to
reverse the phase shift direction. When the phase-shift overflow is asserted, de-asserted,
then asserted again in a short phase shift range, it can falsely reverse the phase shift
direction. Instead, use a simple counter to track the phase shift value and reverse the phase
shift direction (PSINCDEC) only when the counter reaches a previously determined
maximum/minimum phase shift value. For example, if the phase shift must be within 0 to
128, set the counter to toggle PSINCDEC when it reaches 0 or 128.

Phase-Shift Characteristics

e Offers fine-phase adjustment with a resolution of +1/256 of the clock period (or + one
DCM_TAP, whichever is greater). It can be dynamically changed under user control.

e The phase-shift settings affect all nine DCM outputs.
e V¢ and temperature do not affect the phase shift except in direct phase-shift mode.

e In either fixed or variable mode, the phase-shift range can be extended by choosing
CLK90, CLK180, or CLK270, rather than CLKO0, choosing CLK2X180 rather than
CLK2X, or choosing CLKFX180 rather than CLKFX. Even at 25 MHz (40 ns period),
the fixed mode coupled with the various CLK phases allows shifting throughout the
entire input clock period range.

¢ MAX_RANGE mode extends the phase-shift range.

80

www.Xxilinx.com Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

SOXILINX®

DCM Design Guidelines

The phase-shifting (DPS) function in the DCM requires the CLKFB for delay
adjustment.

Because CLKFB must be from CLKO, the DLL output is used. The minimum CLKIN
frequency for the DPS function is determined by DLL frequency mode.

Dynamic Reconfiguration

The Dynamic Reconfiguration Ports (DRPs) can update the initial DCM settings without
reloading a new bitstream to the FPGA. The Virtex-4 Configuration Guide provides more
information on using DRPs. Specific to the DCM, DRPs can perform the following
functions:

Allow dynamic adjustment of CLKEX_MULTIPLY(M) and CLKEX_DIVIDE(D) value
to produce a new CLKFX frequency.

Allow dynamic adjustment of PHASE_SHIFT value to produce a new phase shift.
This feature can be used with the fixed, variable, or direct phase-shift modes to set a
specific phase-shift value.

The following steps are required when using DRPs to load new M and D values:

Subtract the desired M and D values by one. For example, if the desired M/D =9/4,
then load M/D =8/3.

Hold DCM in reset (assert RST signal) and release it after the new M and D values are
written. The CLKEX outputs can be used after LOCKED is asserted High again.

Virtex-4 FPGA User Guide

www.Xxilinx.com 81

UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 2: Digital Clock Managers (DCMs) 2:)(||_|NX®

Connecting DCMs to Other Clock Resources in Virtex-4 Devices

Most DCM functions require connection to dedicated clock resources, including dedicated
clock I/O (IBUFG), clock buffers (BUFGCTRLs), and PMCD. These clock resources are
located in the center column of the Virtex-4 devices. This section provides guidelines on
connecting the DCM to dedicated clock resources.

IBUFG to DCM

Virtex-4 devices contain either 16 or 32 clock inputs. These clock inputs are accessible by
instantiating the IBUFG component. Each top and bottom half of a Virtex-4 device contains
eight or 16 IBUFGs. Any of the IBUFG in top or bottom half of the Virtex-4 device can drive
the clock input pins (CLKIN, CLKFB, PSCLK, or DCLK) of a DCM located in the same
top/bottom half of the device.

DCM to BUFGCTRL

Any DCM clock output can drive any BUFGCTRL input in the same top /bottom half of
the device. There are no restrictions on how many DCM outputs can be used
simultaneously.

BUFGCTRL to DCM

Any BUFGCTRL can drive any DCM in the Virtex-4 devices. However, only up to eight
dedicated clock routing resources exist in a particular clock region. Since the clock routing
is accessed via the BUFGCTRL outputs, this indirectly limits the BUFGCTRL to DCM
connection. If eight BUFGCTRL outputs are already accessing a clock region, and a DCM is
in that region, then no additional BUFGCTRL can be used in that region, including a
connection to the FB pin of the DCM.

DCM to and from PMCD
Refer to the PMCD chapter: “Phase-Matched Clock Dividers (PMCDs)”.

Application Examples

The Virtex-4 FPGA DCM can be used in a variety of creative and useful applications. The
following examples show some of the more common applications.

Standard Usage

The circuit in Figure 2-8 shows DCM_BASE implemented with internal feedback and
access to RST and LOCKED pins. This example shows the simplest use case for a DCM.

82 www.Xxilinx.com Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

SOXILINX®

Application Examples

Board-Level Clock Generation

IBUFG

DCM_BASE

BUFG

IBUF

CLKO

CLKIN CLK90
CLK180

CLKFB CLK270
CLK2X

CLK2X180

RST CLKDV
CLKFX

CLKFX180

LOCKED

OBUF

B .

Figure 2-8: Standard Usage

UG070_2_07_071204

The board-level clock generation example in Figure 2-9 illustrates how to use a DCM to
generate output clocks for other components on the board. This clock can then be used to
interface with other devices. In this example, a DDR register is used with its inputs
connected to GND and V. Because the output of the DCM is routed to BUFG, the clock
stays within global routing until it reaches the output register. The quality of the clock is

maintained.

If the design requires global buffers in other areas, use an OBUF instead of BUFG and
ODDR (Figure 2-10).

However, the clock quality will not be as well preserved as when connected using a global
buffer and a DDR register (Figure 2-11).

Virtex-4 FPGA User Guide

UGO070 (v2.6) December 1, 2008

www.Xxilinx.com

83

http://www.xilinx.com

Chapter 2: Digital Clock Managers (DCMs)

SIXILINX®

Outside FPGA

| Inside FPGA

|

|

|

| \BUFG DCM_ADV BUFG
| CLKO
. CLKIN CLK90
: CLK180
| IBUFG CLKFB CLK270
| CLK2X
a CLK2X180
I RST CLKDV
' CLKFX
' PSINCDEC CLKFX180
' PSEN

| PSCLK

|

| DADDRI[6:0]

| DI[15:0] Eﬁgﬂgﬂ%
I DWE :

: DEN

| DCLK

ODDR

1

GND

D1

D2

UG070_2_08_031308

Figure 2-9: Board-Level Clock Using DDR Register with External Feedback

Outside FPGA

:mgdeFPGA

:lBUFG DCM_ADV

| CLKO
I CLKIN CLK90
I CLK180
: IBUFG CLKFB CLK270
| CLK2X
. CLK2X180
! RST CLKDV
I CLKFX
| PSINCDEC CLKFX180
I PSEN

: PSCLK

|

' DADDR[6:0] LOCKED
| DI[15:0] DOL15:0]
| DWE :

I DEN

: DCLK

\- - - _____

UG070_2_09_031208

Figure 2-10: Board-Level Clock Using OBUF with External Feedback

www.Xxilinx.com

Virtex-4 FPGA User Guide

UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

2:)(||_|NX® Application Examples

Vee
ODDR
IBUFG DCM_ADV BUFG o oL
| CLKO -
| CLKIN CLK90
CLK180 —1 D2
—| CLKFB CLK270 GND
CLK2X
CLK2X180 Y
RST CLKDV
CLKFX
PSINCDEC CLKEX180
PSEN
PSCLK
DADDRI[6:0] LOCKED
DI[15:0] DOL15:0]
DWE :
DEN
DCLK

UG070_2_10_031308

Figure 2-11: Board-Level Clock with Internal Feedback (Clock Forwarding)

Board Deskew with Internal Deskew

Some applications require board deskew with internal deskew to interface with other
devices. These applications can be implemented using two or more DCM. The circuit
shown in Figure 2-12 can be used to deskew a system clock between multiple

Virtex devices in the same system.

Virtex-4 FPGA User Guide www.Xxilinx.com 85
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 2: Digital Clock Managers (DCMs)

SIXILINX®

Virtex-4 FPGA

This circuit can be duplicated to multiple Virtex devices. Use CLKDLL

| Vee ODDR :
IBUF
| [BUFG DCM_ADV BUFG t T g |
|
I CLKIN CLKO CGND] D2 :
| CLKFB CLK90 c |
| IBUFG CLK180 |
| CLK270
: RST CLK2X |
| PSINCDEC ~ CLK2X180 |
| PSEN CLKDV |
| PSCLK CLKFX |
| DADDR[6:0] ~ CLKFX180 !
| DI[15:0] INV OBUF [
| DWE | I
| DEN LOCKED | .
| DCLK DO[15:0] |
| I to
I RST
' BUFG |
: DCM_ADV |
CLKO 4[> !
: CLKIN CLK90 :
CLK180
| CLKFB CLK270 |
| CLK2X
| RST CLK2X180 |
| PSINCDEC CLKDV |
| PSEN CLKFX |
| PSCLK CLKFX180 |
: DADDRI6:0] |
| g\',[\;g'o] LOCKED |
: DEN DO[15:0] |
| DCLK :
|
.. ____ -~ -_-_-_-—-—-—-—-—-—-———-———————__________1
L Vitex4FPGA |
' BUFG |
| 1BUFG DCM_ADV |
L] CLKIN CLKO l > '
1 CLK90 |
CLK180 |
: CLKFB CLK270 |
| CLK2X |
I RST CLK2X180 I
| PSINCDEC CLKDV '
| PSEN CLKFX '
[PSCLK CLKFX180 :
: DADDRI6:0] |
| Dol LOCKED |
: DEN DOJ[15:0] |
| DCLK |
| |
| |
| |
| |

for Virtex and Virtex-E devices, and DCM for Virtex-1l and Virtex-1l Pro devices.

UG070_2_11_031208

Figure 2-12: Board Deskew with Internal Deskew Interfacing to Other Virtex
Devices

86

www.Xxilinx.com

Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

SOXILINX®

Application Examples

The example in Figure 2-13 shows an interface from Virtex-4 FPGAs to non-Virtex devices.

Virtex-4 FPGA

BUFG

Vee ODDR

L Tor o

~——1P2
GND

|
|
IBUF

: UFG DCM_ADV

: CLKIN CLKO
CLK90

: IBUFG CLKFB CLK180

| CLK270

. CLK2X

; RST CLK2X180

| CLKDV

| PSINCDEC CLKFX

| PSEN CLKFX180

| PSCLK

: DADDRI6:0]

| DI[15:0] LOCKED

I DWE DO[15:0]

| DEN

| DCLK

|

|

| DCM_ADV

| CLKIN CLKO

| CLK90

| CLKFB CLK180

| CLK270

| RST CLK2X

| CLK2X180

' PSINCDEC CLKDV

| PSEN CLKFX

: PSCLK CLKFX180

: DADDR[6:0]

| DI[15:0]

| DWE

| DEN LOCKED

| DCLK DO[15:0]

|

|

|

C

...non Virtex chips

UG070_2_12_031208

Figure 2-13: Board Deskew with Internal Deskew Interfacing to Non-Virtex Devices

Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

www.Xxilinx.com

87

http://www.xilinx.com

Chapter 2: Digital Clock Managers (DCMs) 2:)(||_|NX®

Clock Switching Between Two DCMs

Figure 2-14 illustrates switching between two clocks from two DCMs while keeping both

DCMs locked.
IBUFG DCM ADV BUFG
| CLKIN CLKO
I CLK90
CLK180
CLKA CLKFB CLK270
CLK2X
RST CLK2X180
PSINCDEC CLKDV BUFGMUX
PSEN CLKFX
PSCLK CLKFX180
DADDRI6:0] 10
DI[15:0]
DWE LOCKED 10
DEN DO[15:0] s
DCLK
IBUFG DCM_ADV BUFG
I CLKIN CLKO H—[>—
CLK90
CLK180
CLKFB
CLKB CLK270
RST CLK2X
CLK2X180
PSINCDEC CLKDV
PSEN CLKFX
PSCLK CLKFX180
DADDRI6:0]
DI[15:0]
DWE LOCKED
DEN DO[15:0]
DCLK
UG070_2_13_031208
Figure 2-14: Clock Switching Between Two DCMs
88 www.Xxilinx.com Virtex-4 FPGA User Guide

UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

2:)(||_|NX® VHDL and Verilog Templates, and the Clocking Wizard

VHDL and Verilog Templates, and the Clocking Wizard

VHDL and Verilog instantiation templates are available in the Libraries Guide for all
primitives. In addition, VHDL and Verilog files are generated by the Xilinx® Clocking
Wizard in the ISE software tool. The Clocking Wizard sets appropriate DCM attributes,
input/output clocks, and buffers for general use cases.

The Clocking Wizard is accessed using the ISE software tool, in the Project Navigator. Refer
to the Xilinx Software Manuals for more information on ISE software.

1. From the Project Navigator menu, select Project - New Source. The New Source
window appears.

Enter a file name and select IP (CoreGen and Architecture Wizard).
Click Next. The Select Core Type window appears.

Select Clocking — Single DCM_ADV and click Next. The New Source Information
window appears.

Click Finish.

The Clocking Wizard starts.

Figure 2-15 to Figure 2-19 show the settings available in the Clocking Wizard.
¢ Figure 2-15 provides the general settings for the DCM.

¢ After choosing the Advanced button, the window shown in Figure 2-16 provides
the advanced setting choices.

¢ The windows in Figure 2-17 and Figure 2-18 show the settings for the global
buffers using the previously selected DCM clock outputs.

¢ When CLKFX or CLKFX180 is selected, the Clock Frequency Synthesizer
window shown in Figure 2-19 appears. This window provides the CLKFX jitter
calculation. To access further information on available settings, choose the More
Info button in each window.

Virtex-4 FPGA User Guide www.Xxilinx.com 89
UGO070 (v2.6) December 1, 2008

http://www.support.xilinx.com/support/software_manuals.htm
http://www.xilinx.com

Chapter 2: Digital Clock Managers (DCMs) XX"JNX@

v
_
[
_
£
v
_
¥
v
[
£

ug070_2_14_071404

Figure 2-15: Xilinx Clocking Wizard — General Setup

SYSTEM_SYNCHRONOUS |?

ug070_2_15_071504

Figure 2-16: Xilinx Clocking Wizard — Advanced

90 www.xilinx.com Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

XX"JNX@ VHDL and Verilog Templates, and the Clocking Wizard

ug070_2_16_071504

Figure 2-17: Xilinx Clocking Wizard — Clock Buffers

Virtex-4 FPGA User Guide www.xilinx.com 91
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 2: Digital Clock Managers (DCMs) XX"JNX@

4

CLKZE_CLKFX_OUT

]
GHD |F

ug070_2_17_071504

Figure 2-18: Xilinx Clocking Wizard — View/Edit Buffer

92 www.xilinx.com Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

7 XILNX

VHDL and Verilog Templates, and the Clocking Wizard

ug_070_2_18_071504

Figure 2-19: Xilinx Clocking Wizard — Frequency Synthesizer

When all the desired settings are selected, choose the Finish button.

The Clocking Wizard closes and the Project Navigator window returns.

*
*

*

The Clocking Wizard writes the selected settings into an .XAW file.
The .XAW file appears in the Sources in Project window list.

Select the . XAW file. In the Processes for Source window, double-click on View
HDL Source or View HDL Instantiation Template. The HDL source or
instantiation template will be generated. These are read-only files for inclusion or
instantiation in a design.

To return to the Clocking Wizard, double-click on the .XAW file. The Clocking
Wizard appears with the previously selected settings. These settings can be
changed and the .XAW file updated to accommodate design changes.

Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

www.xilinx.com 93

http://www.xilinx.com

Chapter 2: Digital Clock Managers (DCMs) 2:)(||_|NX®

DCM Timing Models

The following timing diagrams describe the behavior of the DCM clock outputs under four
different conditions.

1. Reset/Lock

2. Fixed-Phase Shifting

3. Variable-Phase Shifting
4. Status Flags

Reset/Lock

In Figure 2-20, the DCM is already locked. After the reset signal is applied, all output
clocks are stabilized to the desired values, and the LOCKED signal is asserted.

CLKIN4

|
|

[

RST_ | | |

|
I
|
|

CLKOJ

3
|

|
|
I
L 200 _l
— ms |
| |
| |
| DY
|

[

£

|
cikeo | [1]
[
|
CLK180 | |
[

I

|

|

|

I

|

S—
|
CLKFXHHHH'| o
| |
I

|

|

I

I

|

|

S

|
CLKFX180‘...‘...|!

[N O
CLKDV | Lo !

[T I N

LOCKED | | | | | |

|_i

LOCK
I s TR

UG070_2_19_031208

Figure 2-20: RESET/LOCK Example

e Prior to Clock Event 1

Prior to clock event 1, the DCM is locked. All clock outputs are in phase with the
correct frequency and behavior.

e Clock Event1

Some time after clock event 1 the reset signal is asserted at the (RST) pin. While reset is
asserted, all clock outputs become a logic zero. The reset signal is an asynchronous
reset. Note: the diagram is not shown to scale. For the DCM to operate properly, the
reset signal must be asserted for at least 200 ms.

e Clock Event 2

Clock event 2 occurs a few cycles after reset is asserted and deasserted. At clock event
2, the lock process begins. At time LOCK_DLL, after clock event 2, if no fixed phase
shift was selected then all clock outputs are stable and in phase. LOCKED is also
asserted to signal completion.

94 www.Xxilinx.com Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

2:)(||_|NX® DCM Timing Models

Fixed-Phase Shifting

In Figure 2-21, the DCM outputs the correct frequency. However, the clock outputs are not
in phase with the desired clock phase. The clock outputs are phase-shifted to appear
sometime later than the input clock, and the LOCKED signal is asserted.

1

cun [T L [L
[
[

cwo o [L[
|

PR
CLK9O:--+ | | [| [

CLK180 - - : : | | |
|

cwex--- || L L1 L
| |
Lock Ti
LOCKED - -+ — o] .

Figure 2-21: Phase Shift Example: Fixed

e Clock Event1

Clock event 1 appears after the desired phase shifts are applied to the DCM. In this
example, the shifts are positive shifts. CLKO and CLK2X are no longer aligned to
CLKIN. However, CLKO, and CLK2X are aligned to each other, while CLK90 and
CLK180 remain as 90° and 180° versions of CLKO. The LOCK signal is also asserted
once the clock outputs are ready:.

Variable-Phase Shifting

In Figure 2-22, the CLKO output is phase-shifted using the dynamic phase-shift
adjustments in the synchronous user interface. The PSDONE signal is asserted for one
cycle when the DCM completes one phase adjustment. After PSDONE is deasserted, PSEN
can be asserted again, allowing an additional phase shift to occur.

As shown in Figure 2-22, all the variable-phase shift control and status signals are
synchronous to the rising edge of PSCLK.

cun_[L [L[L. TL T L
psok | L LI LI LI
PSEN f_L______W

PSDONE

PSINCDEC D.C. D.C.

| ug070_2_21_071504

Figure 2-22: Phase Shift Example: Variable

Virtex-4 FPGA User Guide www.Xxilinx.com 95
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 2: Digital Clock Managers (DCMs) i:)("JNX®

e Clock Event1

At Tpymcck psens before clock event 1, PSEN is asserted. PSEN must be active for
exactly one clock period; otherwise, a single increment/decrement of phase shift is not
guaranteed. Also, the PSINCDEC value at Tpyccx psineDec, before clock event 1,
determines whether it is an increment (logic High) or a decrement (logic Low).

e Clock Event 2

At Tpyvicko pspoNE after clock event 2, PSDONE is asserted to indicate one increment
or decrement of the DCM outputs. PSDONE is High for exactly one clock period when
the phase shift is complete. The time required for a complete phase shift will vary. As
a result, PSDONE must be monitored for phase-shift status.

Status Flags

The example in Figure 2-23 shows the behavior of the status flags in the event of a phase-
shift overflow and CLKIN/CLKFB/CLKEFX failure.

own_ 1L 1L 1 1 b
owre [L L 1L [] /
cekex_ [LT 1T L] 2| \ {

DO(0)

DO(1)

/ 257 - 260 Cycles

DO(2)
psclk_[L V.|

psen_ []

PSDONE [] \
D

DO(3) | 070,222 071508

Figure 2-23: Status Flags Example

e Clock Event1
Prior to the beginning of this timing diagram, CLKO (not shown) is already phase-
shifted at its maximum value. At clock event 1, PSDONE is asserted. However, since
the DCM has reached its maximum phase-shift capability no phase adjustment is
performed. Instead, the phase-shift overflow status pin DO[0] is asserted to indicate
this condition.

96 www.Xxilinx.com Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

SOXILINX®

Legacy Support

Legacy Support

Clock Event 2

The CLKEX output stops toggling. Within 257 to 260 clock cycles after this event, the
CLKEFX stopped status DOJ[2] is asserted to indicate that the CLKFX output stops

toggling.
Clock Event 3

The CLKFB input stops toggling. Within 257 to 260 clock cycles after this event, the
CLKFB stopped status DOJ3] is asserted to indicate that the CLKFB output stops

toggling.
Clock Event 4

The CLKIN input stops toggling. Within 9 clock cycles after this event, DO[1] is
asserted to indicate that the CLKIN output stops toggling.

The Virtex-4 device supports the Virtex-II and Virtex-II Pro family DCM primitives. The
mapping of Virtex-II or Virtex-II Pro FPGA DCM components to Virtex-4 FPGA
DCM_ADV components are as follows:

CLKIN, CLKFB, PSCLK, PSINDEC, PSEN, RST, CLK0, CLK90, CLK180, CLK270,
CLK2X, CLK2X180, CLKEX, CLKFX180, CLKDV, PSDONE, LOCKED of Virtex-4
FPGA primitives (DCM_BASE/DCM_PS/DCM_ADV) map to the same
corresponding pins of a Virtex-II or Virtex-1I Pro FPGA DCM.

Dynamic reconfiguration pins of Virtex-4 FPGA DCM_ADYV are not accessible when a
Virtex-II or Virtex-II Pro FPGA DCM component is used, except for DO[15:0].
DOI7:0] pins of Virtex-4 FPGA DCM_ADV /DCM_PS components map to Status[7:0]
of the Virtex-II or Virtex-II Pro FPGA DCMs. DO[15:8] of DCM_ADV/DCM_PS
components are not available when using Virtex-II or Virtex-II Pro FPGA DCM
components.

Virtex-4 FPGA User Guide

www.Xxilinx.com 97

UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 2: Digital Clock Managers (DCMs)

SIXILINX®

98

www.Xxilinx.com

Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

S XILINX®

Chapter 3

Phase-Matched Clock Dividers

(PMCDs)

PMCD Summary

The Phase-Matched Clock Dividers (PMCDs) are one of the clock resources available in the
Virtex-4 architecture. PMCDs provide the following clock management features:

Phase-Matched Divided Clocks

The PMCDs create up to four frequency-divided and phase-matched versions of an
input clock, CLKA. The output clocks are a function of the input clock frequency:
divided-by-1 (CLKA1), divided-by-2 (CLKA1D2), divided-by-4 (CLKA1D4), and
divided-by-8 (CLKA1DS8). CLKA1, CLKA1D2, CLKA1D4, and CLKA1D8 output
clocks are rising-edge aligned to each other but not to the input (CLKA).

Phase-Matched Delay Clocks

PMCDs preserve edge alignments, phase relations, or skews between the input clock
CLKA and other PMCD input clocks. Three additional inputs (CLKB, CLKC, and
CLKD) and three corresponding delayed outputs (CLKB1, CLKC1, and CLKD1) are
available. The same delay is inserted to CLKA, CLKB, CLKC, and CLKD; thus, the
delayed CLKA1, CLKB1, CLKC1, and CLKD1 outputs maintain edge alignments,
phase relations, and the skews of the respective inputs.

A PMCD can be used with other clock resources including global buffers and DCMs.
Together, these clock resources provide flexibility in managing complex clock
networks in designs.

In Virtex-4 devices, the PMCDs are located in the center column. Figure 3-1 shows a
simplified view of the Virtex-4 FPGA center column resources. The PMCDs are
grouped, with two PMCDs in one tile. The PMCDs in each tile have special
characteristics to support applications requiring multiple PMCDs. Table 3-1
summarizes the availability of PMCDs in each Virtex-4 device.

Virtex-4 FPGA User Guide

www.Xxilinx.com 99

UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 3: Phase-Matched Clock Dividers (PMCDs) & XILINX®

DCMs
(Top Half)

PMCDs
(Top Half)

I/Os

BUFGCTRLs
(Top Half) Virtex-4 FPGA
Center Column

BUFGCTRLs
(Bottom Half)

I/Os

PMCDs
(Bottom Half)

DCMs
(Bottom Half)

UG070_3_01_030708

Figure 3-1: PMCD Location in the Virtex-4 Device

Table 3-1: Available PMCD Resources
Device Available PMCDs Site Names
XC4VLX15 0 No PMCDs in these devices
XC4VSX25
XC4VFEX12, XC4VFX20
XC4VLX25, XC4VLX40, XC4VLX60 4 Bottom Half:
XC4VSX35, XC4VSX55 PMCD_X0Y0, PMCD_X0Y1 (one tile)
XC4VEX40 Top Half:
PMCD_X0Y2, PMCD_X0Y3 (one tile)
XC4VLX80, XC4VLX100, XC4VLX160, 8 Bottom Half:
XC4VLX200 PMCD_X0Y0, PMCD_X0Y1 (one tile)
XCAVEX60, XCAVEX100, XCAVEX140 PMCD_X0Y2, PMCD_X0Y3 (one tile)
Top Half:
PMCD_X0Y4, PMCD_XO0Y5 (one tile)
PMCD_X0Y6, PMCD_X0Y7 (one tile)

100

www.Xxilinx.com Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

2:)(||_|NX® PMCD Primitives, Ports, and Attributes

PMCD Primitives, Ports, and Attributes

Figure 3-2 illustrates the PMCD primitive. The VHDL and Verilog template section
includes an example of a PMCD instantiation template.

CLKA CLKA1

CLKA1D2
—————{ RST

CLKAID4 ——=
~———— REL

CLKA1D8 |——~
———{ CLKB CLKB1 [——
———{ CLKC CLKC1 [——
———{ CLKD CLKD1 |——

UG070_3_02_031208

Figure 3-2: PMCD Primitive

Table 3-2 lists the port names and description of the ports.

Table 3-2: PMCD Port Description

Port Name | Direction Description

CLKA Input CLKA is a clock input to the PMCD. The CLKA frequency can be divided by 1, 2, 4, and 8.

CLKB Input | CLKB, CLKC, and CLKD are clock inputs to the PMCD. These clock are not divided by the

CLKC PMCD; however, they are delayed by the PMCD to maintain the phase alignment and phase

CLKD relationship at the input clocks.

RST Input RST is the reset input to the PMCD. Asserting the RST signal asynchronously forces all
outputs Low. Deasserting RST synchronously allows all outputs to toggle.

REL Input | REL is the release input to the PMCD. Asserting the REL signal releases the divided output
synchronous to CLKA.

CLKA1 Output | The CLKA1 output has the same frequency as the CLKA input. It is a delayed version of
CLKA.

CLKA1D2 Output | The CLKA1D2 output has the frequency of CLKA divided by two. CLKA1D2 is rising-edge
aligned to CLKAL.

CLKA1D4 Output | The CLKA1D4 output has the frequency of CLKA divided by four. CLKA1D4 is rising-edge
aligned to CLKAL.

CLKA1DS8 Output | The CLKA1DS output has the frequency of CLKA divided by eight, CLKA1D8 is rising-edge
aligned to CLKAL.

CLKB1 Output | The CLKB1 output has the same frequency as the CLKB input, a delayed version of CLKB.

CLKC1 The skew between CLKB1 and CLKA1 is the same as the skew between CLKB and CLKA

CLKD1 inputs. Similarly, CLKC1 is a delayed version of CLKC, and CLKD1 is a delayed version of
CLKD.

Virtex-4 FPGA User Guide www.xilinx.com 101

UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 3: Phase-Matched Clock Dividers (PMCDs)

SIXILINX®

Table 3-3 lists the PMCD attributes.

Table 3-3: PMCD Attributes

PMCD Attribute Name Description Values Default Value
RST_DEASSERT_CLK | This attribute allows the deassertion of the RST | String: CLKA

signal to be synchronous to a selected PMCD | CLKA, CLKB, CLKC,

input clock. or CLKD
EN_REL This attribute allows for CLKA1D2, CLKA1D4, | Boolean: FALSE

and CLKA1DS8 outputs to be released at REL | FALSE, TRUE

signal assertion.

Note: REL is synchronous to CLKA input.

PMCD Usage and Design Guidelines

This section provides guidelines for using the Virtex-4 FPGA PMCD.

Phase-Matched Divided Clocks

A PMCD produces binary-divided clocks that are rising-edge aligned to each other. From
a clock input CLKA, the PMCD derives four output clocks: a clock with the same
frequency as the original CLKA, %, %, and Y; the frequency. Figure 3-3 illustrates the input
CLKA and the derived clocks (CLKA1, CLKA1D2, CLKA1D4, and CLKA1DS8). CLKAlisa
delayed CLKA; thus, CLKA and CLKA1 are not deskewed. CLKA1D2, CLKA1D4, and
CLKA1DS are rising-edge aligned to CLKA1. CLKAL reflects the duty cycle of CLKA.
However, the divided clocks (CLKA1D2, CLKA1D4, and CLKA1DS8) will have a 50/50
duty cycle regardless of the CLKA duty cycle.

CLKA_|I|_||_||_||_||_||_||_II—II_

|
I
cuar [LI LM LML LML L L

| |
| |
| |
| | |
| - | - - -
ClkAtD2 _!| | | | Il N el D
| | |
CLKATD4 | | | |_:_,_|_E_E_|_,_,_|_
| | | | | | | | |
clkatps | | 1 1 Tt ot]

! TPMCCKOchKIN ug070_3_03_071404

Figure 3-3: PMCD Frequency Divider

Matched Clock Phase

A PMCD allows three additional input clocks (CLKB, CLKC, CLKD) to pass through the
same delay as CLKA. Thus, the corresponding clock outputs CLKB1, CLKC1, and CLKD1
maintain the same phase relation to each other as well as the CLKA outputs (CLKA1,
CLKA1D2, CLKA1D4, CLKA1D6, and CLKA1DS) as their input. By matching the delay
inserted to all inputs, a PMCD preserves the phase relation of its divided clock to other
clocks in the design. Figure 3-4 illustrates CLKA, CLKB, CLKC, and CLKD with a 90°
phase difference and the resulting PMCD outputs. CLKA1, CLKB1, CLKC1, and CLKD1
reflect the duty cycle of their corresponding input.

102

Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

www.Xxilinx.com

http://www.xilinx.com

2:)(||_|NX® PMCD Usage and Design Guidelines

ceka LT LT LT LT LT LT LT
|

cwe [LTI LI LMLl L
I

CLKD||||||||||||||:'||

CLKA1 | | | | | | | | | | | | | |'| | |
ckat2 | [1T 1T 110 1

|
CLKA1D4 | [| | |

[

||
CLKA1D8 | |

|

I
CLKB1|||||||||||||‘||||

|

cor L] LT LT LT LT LT LT

|1
TPMCCKO_CLKIN ——»| f=—

ug070_3_04_071404

Figure 3-4: Matched Clock Phase

Reset (RST) and Release (REL) Control Signals

RST and REL are the control signals for the PMCD. The interaction between RST, REL, and
the PMCD input clocks help manage the starting and stopping of PMCD outputs.

The reset (RST) signal affects the PMCD clock outputs in the following manner:

e Asserting RST asynchronously forces all outputs Low.
e Deasserting RST synchronously allows all outputs to toggle:
¢ The delayed outputs begin toggling one cycle after RST is deasserted and is
registered.
¢ If EN_REL = FALSE (default), the divided outputs will also begin toggling one
cycle after RST is deasserted and is registered.

¢ If EN_REL = TRUE, then a positive edge on REL starts the divided outputs
toggling on the next positive edge of CLKA.
e By setting the RST_DEASSERT_CLK attribute, deasserting RST can be synchronized
to any of the four input clocks. The default value of RST_DEASSERT_CLK is CLKA
(see Table 3-3).

Virtex-4 FPGA User Guide www.Xxilinx.com 103
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 3: Phase-Matched Clock Dividers (PMCDs) & XILINX®

Figure 3-5 illustrates an RST waveform when EN_REL = FALSE.

| | |

|

CLKA ' RST DEASSERT_CLK = CLKA
| EN_REL = FALSE

RST _l i :
All CLK \;Fl i &Jl\‘l_

Outputs

RST asynchronously asserts. After RST is registered,
All output clocks forced Low. all output clocks start toggling.
Deasserted RST is registered UG070_3.05. 071404

Figure 3-5: RST Waveform Example

The release (REL) signal affects PMCD outputs in the following manner:

Asserting REL synchronously starts the divided outputs toggling. REL is synchronous
to CLKA. Asserting REL must meet the setup time to CLKA.

REL assertion does not affect the delayed clock outputs.

REL is necessary when multiple PMCDs are used together and all PMCDs divided
outputs should toggle in phase.

REL is enabled with the EN_REL attribute. The default value of this attribute is
FALSE.

Set to TRUE only if multiple PMCDs are used together, or if other external
synchronization is needed.

RST must be Low before REL can have any effect.
The REL input is positive edge sensitive.

Once REL is asserted, the input has no further effect until another reset.

104

www.Xxilinx.com Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

2:)(||_|NX® PMCD Usage and Design Guidelines

Figure 3-6 illustrates the interaction between the RST and REL signals.

RST_DEASSERT_CLK = CLKA
EN_REL = TRUE

REL

CLKA1D(2, 4, 8)

Deasserted RST Release is synchronized.
is registered. Divided output clocks start toggling.

Delayed output clocks start toggling.

UG070_3_06_071404

Figure 3-6: REL Waveform Example

Connecting PMCD to other Clock Resources

In most applications, the PMCD is used with other clock resources including dedicated
clock I/O (IBUFG), clock buffers (BUFGCTRLs), DCMs, and an MGT clock. Additionally,
PMCD inputs and outputs can be connected to the general interconnects. This section
provides guidelines on connecting a PMCD to clock resources using dedicated routing.

IBUFG to PMCD

Virtex-4 devices contain 16 or 32 global clock I/Os. These clock I/Os are accessible by
instantiating the IBUFG component. Each top and bottom half of the center column
contains eight or 16 IBUFGs. Any of the IBUFGs in the top or bottom half can drive the
clock input pins (CLKA, CLKB, CLKC, or CLKD) of a PMCD located in the same
top/bottom half. The routing from multiple IBUFGs to PMCD inputs are not matched.

DCM to PMCD

Any DCM clock output can drive any PMCD input in the same top/bottom half of the
device. A DCM can drive parallel PMCDs in the same group of two. It is not advisable to
drive parallel PMCDs with DCMs in different groups of two (on the same top /bottom
half) because there can be significant skew between PMCD outputs. This skew is caused by
the skew between inputs of PMCDs in different groups.

BUFGCTRL to PMCD

Any BUFGCTRL can drive any Virtex-4 FPGA PMCD. However, only up to eight
dedicated global clock routing resources exist in a particular clock region. Therefore, access
to PMCD inputs via a BUFGCTRL is limited to eight unique signals. Other resources in the
clock region will compete for the eight global clock tracks.

Virtex-4 FPGA User Guide www.Xxilinx.com 105
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 3: Phase-Matched Clock Dividers (PMCDs)

SIXILINX®

PMCD to BUFGCTRL
A PMCD can drive any BUFGCTRL in the same top /bottom half of the chip.

PMCD to PMCD

A dedicated local connection exists from the CLKA1D8 output of each PMCD to the CLKA
input of any other PMCD within the same tile (group of two).

Application Examples

The Virtex-4 FPGA PMCD can be used in a variety of creative and useful applications. The
following examples show some of the common applications.

DCM and a Single PMCD

A PMCD can be connected to a DCM to further divide a DCM clock. Figure 3-7 illustrates
this example. Note the following guidelines:

The DCM feedback (CLKFB) must be driven by the same frequency as CLKIN for 1X
feedback. Therefore, the PMCD output corresponding to CLKO must be used to drive
the CLKFB pin.

The RST_DEASSERT_CLK attribute must be set to the PMCD input driven by CLKO.

When a DCM is connected to a PMCD, all output clocks, except CLKO and
CLK2X, are held Low until LOCKED is High. Therefore, setting
RST_DEASSERT_CLK to the corresponding DCM feedback clock ensures a
completed feedback loop. Note: CLK2X feedback is not supported.

L4

Reset

DCM

CLKIN CLKO
- CLKFB CLK2X

RST LOCKED

Reset

—

PMCD

BUFGs
CLKA CLKA1 > f/1
CLKB CLKA1D2 [—[>——1/2
RST CLKA1D4A |—D>——1/4
REL CLKB1 [——=D>— 2f

N

RST_DEASSERT_CLK = CLKA

EN_REL = FALSE

Figure 3-7: DCM and a Single PMCD

DCM and Parallel PMCDs

A DCM can be connected to parallel PMCDs. Figure 3-8 illustrates this example. Note the
following guidelines:

UG070_3_07_071404

The DCM feedback (CLKFB) must be driven by the same frequency as CLKIN for 1X
feedback. Therefore, the PMCD output corresponding to CLKO must be used to drive
the CLKFB pin.

The RST_DEASSERT_CLK attribute must be set to the PMCD input driven by CLKO.
¢

When a DCM is connected to a PMCD, all output clocks, except CLKO and
CLK2X, are held Low until LOCKED is High. Thus, setting RST_DEASSERT_CLK

106

www.Xxilinx.com

Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

SOXILINX®

Application Examples

to the corresponding DCM feedback clock ensures all PMCD outputs will start
synchronously. Note: CLK2X feedback is not supported.

e The REL signals of the parallel PMCDs must be driven directly from the DCM
LOCKED output.

¢ Dedicated, timing-matched routes for both CLK signals and LOCKED signals
exist from the DCMs to the PMCDs on the same top/bottom half of the device.

¢ To match output skews between two PMCDs, a DCM must connect to two PMCDs in
the same tile (group of two).

DCM PMCD #1 BUFGs
CLKIN CLKO Y CLKA CLKA1 >
L-| CLKFB CLK180 Reset CLKA1D2 >
RST CLKA1D4 [——]>—
Reset
S RsT LOCKED [-# REL CLKA1DS [——p—
RST_DEASSERT_CLK = CLKA
EN_REL = TRUE
PMCD #2
CLKA CLKA1 ——>—
CLKB CLKA1D2 |——D>—
Reset | rst CLKA1D4 |— >
REL CLKA1D8 [——D>—

RST_DEASSERT_CLK = CLKB

EN_REL = TRUE

Figure 3-8: DCM and Parallel PMCDs

IBUFG, BUFG, and PMCD

When deskewed clocks are not required, a PMCD can be used without a DCM. Figure 3-9
and Figure 3-10 illustrate these examples.

UG070_3_08_071404

PMCD BUFGs

G;gEK CLKA CLKA1 |——=]>—~
CLKA1D2 |——+D>—~

Reset | o1 CLKA1D4 |——D>—

l_ REL CLKA1D8 |——D>—~

RST_DEASSERT_CLK = CLKA

EN_REL = FALSE

UG070_3_09_071404

Figure 3-9: PMCD Driven by IBUFG (GCLK 10B)

Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

www.Xxilinx.com 107

http://www.xilinx.com

Chapter 3: Phase-Matched Clock Dividers (PMCDs)

SIXILINX®

PMCD

BUFGs
G;gléK CLKA CLKA1 ——]D>>—
CLKA1D2 |—>—

RST CLKA1D4 ——D>>—~
REL CLKA1D8 ——D>—~

RST_DEASSERT_CLK = CLKA
EN_REL = TRUE

Logic to synchronize REL from T
the PMCD output clock domain
to the PMCD input clock domain.

UGO070_3_10_071404

Figure 3-10: PMCD Driven by BUFG and Synchronous Logic

PMCD for Further Division of Clock Frequencies

PMCDs can be used to further divide clock frequencies. A dedicated local connection
exists from the CLKA1DS8 output of each PMCD to the CLKA input of the other PMCD
within the same tile (group of two). Thus, only CLKA1DS8 can directly connect two PMCDs
in series.

Figure 3-11 illustrates an example of dividing clock frequencies using a DCM and a PMCD.
Note the following guidelines:

e The CLKDV output is connected to CLKA of PMCD to allow further frequency
division.

e The CLKO feedback clock is connected to CLKB, and the RST_DEASSERT_CLK
attribute is set to CLKB. These connections and settings ensure synchronous PMCD

outputs.
DCM PMCD
CLKIN CLKO | CLKA BUFGs
| CLKFB Resol CLKB CLKA1D8 —[>—— /128
CLKDV 16 RST
Reset —>—
——"IRST LOCKED |— LReL CLKB1

CLKDV_DIVIDE = 16 RST_DEASSERT_CLK = CLKB

EN_REL = FALSE

UG070_3_11_071404

Figure 3-11: DCM to PMCD for Clock Frequency Division

108 www.Xxilinx.com Virtex-4 FPGA User Guide

UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

SOXILINX®

VHDL and Verilog Templates, and the Clocking Wizard

Figure 3-12 illustrates an example of dividing clock frequencies using two PMCDs in
series. Note the following guidelines:

e A dedicated local connection exists from the CLKA1D8 output of each PMCD to the
CLKA and CLKB inputs of the other PMCD within the same tile (group of two). Thus,
only CLKA1DS8 can directly connect two PMCDs in series.

PMCD PMCD BUFG
GCLK
OB CLKA CLKA1DS8 /8 CLKA CLKA1D8 [—D>>— i/64
Reset RST Reset RST
F REL r REL

RST_DEASSERT_CLK = CLKA RST_DEASSERT_CLK = CLKA
EN_REL = FALSE EN_REL = FALSE

UG070_3_12_071404

Figure 3-12: PMCD to PMCD for Clock Frequency Division

VHDL and Verilog Templates, and the Clocking Wizard

The “VHDL Template,” page 111 and “Verilog Template,” page 112 are also available in the
Libraries Guide for all primitives. In addition, VHDL and Verilog files are generated by the
Clocking Wizard in the ISE® software. The Clocking Wizard sets appropriate DCM and
single/parallel PMCD configurations.

The Clocking Wizard is accessed using the ISE software, in the Project Navigator. Refer to
the Xilinx® Software Manuals for more information on ISE software.

1. From the Project Navigator menu, select Project -> New Source. The New Source
window appears.

Enter a file name and select IP (CoreGen and Architecture Wizard).
Click Next. The Select Core Type window appears.
Select Clocking -> Single DCM_ADV, click next. The New Source Information window
appears.
5. Click Finish.
6. The Clocking Wizard starts.
Figure 3-13 and Figure 3-14 show the settings in the Clocking Wizard for using the DCM

with the PMCD. To access further information on available settings, choose the More Info
button in each window.

Virtex-4 FPGA User Guide www.Xxilinx.com 109
UGO070 (v2.6) December 1, 2008

http://www.support.xilinx.com/support/software_manuals.htm
http://www.xilinx.com

Chapter 3: Phase-Matched Clock Dividers (PMCDs) XX"JNX@

&2
]
]
=
[
[
]
e
&2
]
i

ug070_3_13_071204

Figure 3-13: Xilinx Clocking Wizard - General Setup (PMCD)

110 www.xilinx.com Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

XX"JNX@ VHDL and Verilog Templates, and the Clocking Wizard

ug070_3_14_071204

Figure 3-14: Xilinx Clocking Wizard - Phase-Matched Clock Divider (PMCD)

VHDL Template

-- Example PMCD Component Declaration

component PMCD

generic (
EN_REL : boolean := FALSE;
RST_DEASSERT_CLK : string := "CLKA";
)i
port (
CLKA1l : out std_ulogic;
CLKA1D2 : out std_ulogic;
CLKA1D4 : out std_ulogic;
CLKA1DS : out std_ulogic;
CLKB1 : out std_ulogic;
CLKC1 : out std_ulogic;
CLKD1 : out std_ulogic;
Virtex-4 FPGA User Guide www.xilinx.com 111

UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 3: Phase-Matched Clock Dividers (PMCDs)

SIXILINX®

)i

end component;

CLKA
CLKB
CLKC
CLKD
REL
RST

in
in
in
in
in
in

std_ulogic;
std_ulogic;
std_ulogic;
std_ulogic;
std_ulogic;
std_ulogic

--Example PMCD instantiation

U_PMCD

PMCD

Port map (
CLKAl => user_clkal,
user_clkald2,
user_clkald4,
user_clkalds,
user_clkbl,
user_clkcl,
user_clkdl,
user_clka,
user_clkb,
user_clkc,
user_clkd,
user_rel,
user_rst

)

Verilog Template

CLKA1D2 =>
CLKA1D4 =>
CLKA1DS8 =>
CLKB1 =>
CLKC1 =>
CLKD1 =>
CLKA =>
CLKB =>
CLKC =>

CLKD =>
REL =>
RST =>

// Example PMCD

module PMCD
CLKA, CLKB, CLKC, CLKD, REL, RST);

output
output
output
output
output
output
output

input
input
input
input
input
input

parameter EN_REL =

CLKA;
CLKB;
CLKC;
CLKD;
REL;
RST;

(CLKAL,

module declaration

CLKAL;
CLKAL1D2;
CLKA1D4;
CLKA1DS;
CLKB1;
CLKC1;
CLKD1;

CLKA1D2,

"FALSE";

parameter RST DEASSERT _CLK =

endmodule;

//Example PMCD instantiation
PMCD U_PMCD (
.CLKAl (user_clkal),

.CLKA1D2 (user_clkald2),

CLKA1D4,

CLKA1DS,

"CLKA";

CLKB1,

CLKC1,

CLKD1,

112

www.Xxilinx.com

Virtex-4 FPGA User Guide

UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

2:)(||_|NX® VHDL and Verilog Templates, and the Clocking Wizard

.CLKA1D4 (user_clkald4),
.CLKA1DS8 (user_clkalds8),
.CLKB1 (user_clkbl),
.CLKC1 (user_clkcl),
.CLKD1 (user_clkdl),
.CLKA (user_clka),

.CLKB (user_clkb),
.CLKC (user_clkc),
.CLKD (user_clkd),
.REL (user_rel),
.RST (user_rst)

)i

Virtex-4 FPGA User Guide www.Xxilinx.com 113
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 3: Phase-Matched Clock Dividers (PMCDs) & XILINX®

114 www.xilinx.com Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

S XILINX®

Chapter 4

Block RAM

Block RAM Summary

The Virtex®-4 FPGA block RAMs are similar to the Virtex-II and Spartan™.-3 FPGA block
RAMs. Each block RAM stores 18 Kbits of data. Write and Read are synchronous
operations; the two ports are symmetrical and totally independent, sharing only the stored
data. Each port can be configured in any “aspect ratio” from 16Kx1, 8Kx2, to 512x36, and
the two ports are independent even in this regard. The memory content can be defined or
cleared by the configuration bitstream. During a write operation the data output can either
reflect the new data being written, or the previous data now being overwritten, or the
output can remain unchanged.

Virtex-4 FPGA enhancements of the basic block RAM include:

The user can invoke a pipeline register at the data read output, still inside the block
RAM. This allows a higher clock rate, at the cost of one additional clock period
latency.

Two adjacent block RAMs can be combined to one deeper 32Kx1 memory without any
external logic or speed loss.

Ports 18 or 36 bits wide can have individual write enable per byte. This feature is used
for interfacing to an on-chip (PPC405) microprocessor.

Each block RAM contains optional address sequencing and control circuitry to
operate as a built-in Multi-rate FIFO memory. The FIFO can be 4K deep and 4 bits
wide, or 2Kx9, 1Kx18, or 512x36. Write and read ports have identical width. The two
free-running clocks can have completely unrelated frequencies (asynchronous relative
to each other). Operation is controlled by the read and write enable inputs. FULL and
EMPTY outputs signal the extreme conditions, without a possibility of errors or
glitches. Programmable ALMOSTFULL and ALMOSTEMPTY outputs can be used
for warning to simplify the external control of the write and read operation, especially
the maximum clock rate.

Additional Virtex-4 FPGA block RAM features include:

All output ports are latched. The state of the output port does not change until the
port executes another read or write operation.

All inputs are registered with the port clock and have a setup-to-clock timing
specification.

All outputs have a read function or a read-during-write function, depending on the
state of the WE pin. The outputs are available after the clock-to-out timing interval.
The read-during-write outputs have one of three operating modes: WRITE_FIRST,
READ_FIRST, and NO_CHANGE.

A write operation requires one clock edge.

Virtex-4 FPGA User Guide

www.Xxilinx.com 115

UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 4: Block RAM & XILINX®

¢ Aread operation requires one clock edge.
e DO has an optional internal pipeline register.

e Data input and output signals are always described as buses; that is, in a 1-bit width
configuration, the data input signal is DI[0] and the data output signal is DO[0].

Block RAM Introduction

In addition to distributed RAM, Virtex-4 devices feature a large number of 18 Kb block
RAM memories. True Dual-Port™ RAM offers fast blocks of memory in the device. Block
RAMs are placed in columns, and the total number of block RAM memory depends on the
size of the Virtex-4 device. The 18 Kb blocks are cascadable to enable a deeper and wider
memory implementation, with a minimal timing penalty.

Embedded dual- or single-port RAM modules, ROM modules, synchronous FIFOs, and
data width converters are easily implemented using the Xilinx® CORE Generator™
software memory modules. Asynchronous FIFOs can be generated using the CORE
Generator tool FIFO Generator module. The synchronous or asynchronous FIFO
implementation does not require additional CLB resources for the FIFO control logic since
it uses dedicated hardware resources.

Synchronous Dual-Port and Single-Port RAMs

Data Flow

The 18 Kb block RAM dual-port memory consists of an 18 Kb storage area and two
completely independent access ports, A and B. The structure is fully symmetrical, and both
ports are interchangeable. Figure 4-1 illustrates the dual-port data flow. Table 4-1 lists the
port names and descriptions.

Data can be written to either or both ports and can be read from either or both ports. Each
write operation is synchronous, each port has its own address, data in, data out, clock,
clock enable, and write enable. The read operation is synchronous and requires a clock
edge.

There is no dedicated monitor to arbitrate the effect of identical addresses on both ports. It
is up to the user to time the two clocks appropriately. However, conflicting simultaneous
writes to the same location never cause any physical damage.

When a block RAM port is enabled, all address transitions must meet the setup/hold time
of the ADDR inputs with respect to the port clock, as listed in the Virtex-4 Data Sheet. The
requirement must be met even when the read data output is of no interest and ignored by
the user.

116 www.Xxilinx.com Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

2:)(||_|NX® Synchronous Dual-Port and Single-Port RAMs

CASCADEOUTA CASCADEOUTB

18-Kbit Block RAM

DIA
DIPA
ADDRA Port A

WEA
ENA
SSRA DOA

CLKA DOPA
REGCEA 18 Kb

Memory
Array

il
]

DIB DOB
DIPB DOPB
ADDRB

WEB

ENB Port B

SSRB

CLKB
REGCEB

|

i

CASCADEINA CASCADEINB

ug070_4_01_071204

Figure 4-1: Dual-Port Data Flows

Table 4-1: Dual-Port Names and Descriptions

Port Name Description
DI[A | B] Data Input Bus
DIP[A | B]®D Data Input Parity Bus
ADDRIA | B] Address Bus
WEJA | B] Write Enable
EN[A | B] When inactive no data is written to the block RAM and the

output bus remains in its previous state.

SSR[A | B] Set/Reset
CLKJ[A | B] Clock Input
DOIA | B] Data Output Bus
DOP[A | B]® Data Output Parity Bus
REGCEIA | B] Output Register Enable
CASCADEINIA | B] Cascade input pin for 32K x 1 mode
CASCADEOUTIA | B] Cascade output pin for 32K x 1 mode

Notes:
1. The “Data Parity Buses - DIP[A/B] and DOP[A/B]” section has more information on Data Parity pins.

Virtex-4 FPGA User Guide www.Xxilinx.com 117
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 4: Block RAM & XILINX®

Read Operation

The read operation uses one clock edge. The read address is registered on the read port,
and the stored data is loaded into the output latches after the RAM access time.

Write Operation

A write operation is a single clock-edge operation. The write address is registered on the
write port, and the data input is stored in memory.

Operating Modes

There are three modes of a write operation. The “read during write” mode offers the
flexibility of using the data output bus during a write operation on the same port. Output
mode is set during device configuration. These choices increase the efficiency of block
RAM memory at each clock cycle.

Three different modes are used to determine data available on the output latches after a
write clock edge: WRITE_FIRST, READ_FIRST, and NO_CHANGE.

Mode selection is set by configuration. One of these three modes is set individually for
each port by an attribute. The default mode is WRITE_FIRST.

WRITE_FIRST or Transparent Mode (Default)

In WRITE_FIRST mode, the input data is simultaneously written into memory and stored
in the data output (transparent write), as shown in Figure 4-2.

CLK M

WE

Data In XXXX

| | | |

| | | |

| | | :

T X
Address X ! aa — X ! bb / X ! cc / X ! dd—

| i | i

| | | |

| | | |

| | | |

Data Out 0000 XL> MEM(aa) X N 1111 X o 2020 XL>MEM(dd)
ENABLE _/
DISABLED READ WRITE ! WRITE READ
MEM(bb)=1111 MEM(cc)=2222
ug070_4_02_071204
Figure 4-2: WRITE_FIRST Mode Waveforms
118 www.xilinx.com Virtex-4 FPGA User Guide

UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

2:)(||_|NX® Synchronous Dual-Port and Single-Port RAMs

READ_FIRST or READ-BEFORE-WRITE Mode

In READ_FIRST mode, data previously stored at the write address appears on the output
latches, while the input data is being stored in memory (read before write). See Figure 4-3.

CLKM
U

WE
Data In XXXX X 1111 X 2222 X XXXX
X

| |
| f f
t t t	

Address X : aa — X : bb— X : o

t t t
| | |
- - -
| | |
| | |

|
I
f
|
|
|
>é> / -]
old MEM(bb) |
}
I
I

Data Out 0000 XL> MEM(aa) X» old MEM(cc) X L»MEM(dd)
ENABLE _/ |
DISABLED READ WRITE WRITE READ
MEM(bb)=1111 MEM(cc)=2222

ug070__4_03_071204

Figure 4-3: READ_FIRST Mode Waveforms

NO_CHANGE Mode

In NO_CHANGE mode, the output latches remain unchanged during a write operation.
As shown in Figure 4-4, data output is still the last read data and is unaffected by a write
operation on the same port. NO_CHANGE mode is not supported in 32K x 1 RAM

configuration.
| | |
CLK : |
I I
WE : / : : \ :
Data In ! XXXX X ! 1111 X ! 2222 X ! XXXX
| | | |
Address X | aa — X | bb X | cc X | dd—
| | | |
t / } } } /
Data Out 0000 | XL> MEM(aa) | | | X L»MEM(dd)
| | | |
ENABLE | | | |
DISABLED READ WRITE WRITE READ
MEM(bb)=1111 MEM(cc)=2222 Ug070_4_04_071204

Figure 4-4: NO_CHANGE Mode Waveforms

Conflict Avoidance

Virtex-4 FPGA block RAM is a true dual-port RAM, where both ports can access any
memory location at any time. When accessing the same memory location from both ports,
the user must, however, observe certain restrictions, specified by the clock-to-clock setup
time window. There are two fundamentally different situations: The two ports either have
a common clock (“synchronous clocking”), or the clock frequency or phase is different for
the two ports (“asynchronous clocking”).

Asynchronous Clocking

Asynchronous clocking is the more general case, where the active edges of both clocks do
not occur simultaneously:

Virtex-4 FPGA User Guide www.Xxilinx.com 119
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 4: Block RAM & XILINX®

e There are no timing constraints when both ports perform a read operation.

e When one port performs a write operation, the other port must not read- or write-
access the same memory location by using a clock edge that falls within the specified
forbidden clock-to-clock setup time window. If this restriction is ignored, a read
operation could read unreliable data, perhaps a mixture of old and new data in this
location; a write operation could result in wrong data stored in this location. There is,
however, no risk of physical damage to the device. If a read and write operation is
performed, the write will store valid data at the write location.

The clock-to-clock setup timing parameter is specified together with other block RAM
switching characteristics in the Virfex-4 Data Sheet.

Synchronous Clocking

Synchronous clocking is the special case, where the active edges of both port clocks occur
simultaneously:

e There are no timing constraints when both ports perform a read operation.
¢ When one port performs a write operation, the other port must not write into the
same location, unless both ports write identical data.

e When one port performs a write operation, the write operation succeeds; the other
port can reliably read data from the same location if the write port is in READ_FIRST
mode. DATA_OUT will then reflect the previously stored data.

If the write port is in either WRITE_FIRST or in NO_CHANGE mode, then the DATA-
OUT on the read port would become invalid (unreliable). Obviously, the mode setting
of the read-port does not affect this operation.

Additional Block RAM Features in Virtex-4 Devices

Optional Output Registers

The optional output registers improve design performance by eliminating routing delay to
the CLB flip-flops for pipelined operation. These output registers have programmable
clock inversion as in CLB flip-flops. An independent clock enable input is provided for
these output registers. As a result the output data registers hold the value independent of
the input register operation. Figure 4-5 shows the optional output register.

120

www.Xxilinx.com Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com/bvdocs/publications/ds302.pdf
http://www.xilinx.com/bvdocs/publications/ds302.pdf
http://www.xilinx.com

SOXILINX®

Additional Block RAM Features in Virtex-4 Devices

DO

Address

DI

—_—

WE

Register Memory D Q D Q
Array Latches Register

(common to

both ports) —

Write Read Latch
J_I_ Strobe Strobe J-I— Enable J-I—
Optional

EN

Optional

CLK —]
Inverter

Control Engine Inverter

|:|Configurable Options

UG070_4_05_030708

Figure 4-5: Block RAM Logic Diagram (One Port Shown)

Independent Read and Write Port Width Selection

All block RAM ports have control over data width and address depth (aspect ratio).
Virtex-4 devices extend this flexibility to each individual port where Read and Write can be
configured with different data widths. See “Block RAM Attributes,” page 127.

If the Read port width differs from the Write port width, and is configured in
WRITE_FIRST mode, then DO shows valid new data only if all the write bytes are enabled.

Independent Read and Write port width selection increases the efficiency of implementing
a content addressable memory (CAM) in block RAM. Excluding the built-in FIFO, this
option is available for all RAM port sizes and modes.

Cascadable Block RAM

Combining two 16K x 1 RAMs to form one 32K x 1 RAM is possible in the Virtex-4 block
RAM architecture without using local interconnect or additional CLB logic resources.
NO_CHANGE mode is not supported in 32K x 1 RAM configuration. Any two adjacent
block RAMs can be cascaded to generate a 32K x 1 block RAM. Increasing the depth of the
block RAM by cascading two block RAMs is available only in the 32K x 1 mode. Further
information on cascadable block RAM is described in the “Additional RAMB16 Primitive
Design Considerations” section. For other wider and/or deeper sizes, consult the Creating
Larger RAM Structures section. Figure 4-6 shows the block RAM with the appropriate
ports connected in the Cascadable mode. The “Additional Block RAM Features in Virtex-4
Devices” section includes further information on cascadable block RAMs.

Virtex-4 FPGA User Guide www.Xxilinx.com 121
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 4: Block RAM

SIXILINX®

CASCADEOUT
(No Connect)
DI E'—» DI Do |—o
A[13:0] 4 D Q] A[13:0]
A ba Ald T 1
RAM_EXTENSION =

UPPER(0)

Output FF

DO

WE[3:0]
A[13:0] + D Q
Al4 D Q

A[13:0]

LOWER(1)

WE[3:0]

Interconnect

-~ Block RAM

RAM_EXTENSION =

WE

CASCADEIN of Top

1
CASCADEOUT of Bottom

Optional
Output FF

T

— DO
Not Used

CASCADEIN
Connect to logic High or Low

Figure 4-6: Cascadable Block RAM

FIFO Support

UG070_4_06_033005

The block RAM can be configured as an asynchronous FIFO (different clock on read and
write ports) or a synchronous FIFO. In the FIFO mode, the block RAM Port A is the FIFO
read port, while the block RAM Port B is the FIFO write port. The supported
configurations are: 4K x 4, 2K x 9, 1K x 18, and 512 x 36. Figure 4-7 shows the block RAM
1/0Os used for the FIFO implementation. The “Built-in FIFO Support” section contains

further details.

1/Os not used

in FIE(_) Mode
,_ ________ ha
—| DIA [
—>: AA[13:0] DOA: — DO
| WEA[3:0] : — L EmPTY
RD_.EN —=}—| —| ENA
| | — |+ ALMOST_EMPTY
SSR — SSRA |
= |
DI : DIB |
I AB[13:0] DOB:
WR_EN —'T : WEB[3:0] | — — FuLL
] |
: ENB | — —— ALMOST_FULL
1 SSRe : — | RDCOUNT
WR_CLK — =} CLKB PotB | — [WRCOUNT
FIFO
Logic

UG070_4_07_071204

Figure 4-7: Block RAM Implemented as a FIFO

122

www.Xxilinx.com

Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

2:)(||_|NX® Additional Block RAM Features in Virtex-4 Devices

Byte-Wide Write Enable

The byte-wide write enable feature of the block RAM gives the capability to write eight bit
(one byte) portions of incoming data. There are four independent byte-write enable inputs.
Each byte-write enable is associated with one byte of input data and one parity bit. All four
byte-write enable inputs must be driven in all data width configurations. This feature is
useful when using block RAM to interface with the PPC405. Byte-write enable is not
available in the Multi-rate FIFO. Byte-write enable is further described in the “Additional
RAMB16 Primitive Design Considerations” section. Figure 4-8 shows the byte-wide write-
enable logic.

When configured for a 36-bit or 18-bit wide data path, any port can restrict writing to
specified byte locations within the data word. If configured in READ_FIRST mode, the DO
bus shows the previous content of the whole addressed word. In WRITE_FIRST mode,
with identical Read and Write port widths, DO shows only the enabled newly written
byte(s). The other byte values must be ignored. In WRITE_FIRST mode with different
widths for Read and Write ports, all data on DO must be ignored.

DI D DI DO [—— DO
A[13:0] D A[13:0]
A14 D Al4
RAM_EXTENSION =
NONE(0)
.P . D WE_Control

4

WE[3:0]
4
D WE[3:0]

UG070_4_08_033005

Figure 4-8: Byte-Wide Write Enable In Block RAM

Virtex-4 FPGA User Guide www.Xxilinx.com 123
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 4: Block RAM & XILINX®

Block RAM Library Primitives

RAMB16 is the block RAM library primitive. It is the basic building block for all block
RAM configurations. Other block RAM primitives and macros are based on this primitive.
Some block RAM attributes can only be configured using this primitive (e.g., pipeline
register, cascade). See “Block RAM Attributes,” page 127.

Figure 4-9 illustrates all the I/O ports of the block RAM primitive (RAMB16).

CASCADEOUTA CASCADEOUTB

82 1pA

DIPA
ADDRA DOA 32—

WEA DOPA —F~—

ENA
REGCEA
SSRA

CLKA

i

aliia;

% b

DIPB a0
ADDRB DOB |—F~—
WEB DOPB |—F~—

i

ENB
REGCEB
SSRB

CLKB

f f

CASCADEINA CASCADEINB

ug070_4_09_071204

Figure 4-9: Block RAM Port Signals (RAMB16)

AL

Block RAM Port Signals

Each block RAM port operates independently of the other while accessing the same set of
18 Kbit memory cells.

Clock - CLKIAIB]

Each port is fully synchronous with independent clock pins. All port input pins have setup
time referenced to the port CLK pin. The output data bus has a clock-to-out time
referenced to the CLK pin. Clock polarity is configurable (rising edge by default).

Enable - EN[AIB]

The enable pin affects the read, write, and set/reset functionality of the port. Ports with an
inactive enable pin keep the output pins in the previous state and do not write data to the
memory cells. Enable polarity is configurable (active High by default).

124 www.xilinx.com Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

SOXILINX®

Block RAM Port Signals

Write Enable - WE[AIB]

To write the content of the data input bus into the addressed memory location, both EN
and WE must be active within a setup time before the active clock edge. The output latches
are loaded or not loaded according to the write configuration (WRITE_FIRST,
READ_FIRST, NO_CHANGE). When inactive, a read operation occurs, and the contents of
the memory cells referenced by the address bus reflect on the data-out bus, regardless of
the write mode attribute. Write enable polarity is configurable (active High by default).

Register Enable - REGCE[AIB]

The register enable pin (REGCE) controls the optional output register. When the RAM is in
register mode, REGCE = 1 registers the output into a register at a clock edge. The polarity
of REGCE is configurable (active High by default).

Set/Reset - SSR[AIB]

The SSR pin forces the data output latches to contain the value “SRVAL” (see “Block RAM
Attributes,” page 127). The data output latches are synchronously asserted to 0 or 1,
including the parity bit. In a 36-bit width configuration, each port has an independent
SRVALIA | B] attribute of 36 bits. This operation does not affect RAM cells and does not
disturb write operations on the other port. Similar to the read and write operation, the
set/reset function is active only when the enable pin of the port is active. Set/reset polarity
is configurable (active High by default). This pin is not available when optional output
registers are used.

Address Bus - ADDR[AIB]<14:#>

The address bus selects the memory cells for read or write. The width of the port
determines the required address bus width for a single RAMB16, as shown in Table 4-2.

Table 4-2: Port Aspect Ratio

Port Data Width | Port Address Width Depth ADDR Bus DI Bus / DO Bus DIP Bus / DOP Bus
1 14 16,384 <13:0> <0> NA
2 13 8,192 <13:1> <1:0> NA
4 12 4,096 <13:2> <3:0> NA
9 11 2,048 <13:3> <7:0> <0>
18 10 1,024 <13:4> <15:0> <1:0>
36 9 512 <13:5> <31:0> <3:0>

For cascadable block RAM, the data width is one bit, however, the address bus is 15 bits
<14:0>. The address bit 15 is only used in cascadable block RAM.

Data and address pin mapping is further described in the “Additional RAMB16 Primitive
Design Considerations”section.

Data-In Buses - DI[AIB]<#:0> & DIP[AIB]<#:0>

Data-in buses provide the new data value to be written into RAM. The regular data-in bus
(DI), and the parity data-in bus (DIP) when available, have a total width equal to the port

Virtex-4 FPGA User Guide www.Xxilinx.com 125
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 4: Block RAM

SIXILINX®

width. For example the 36-bit port data width is represented by DI<31:0> and DIP<3:0>, as
shown in Table 4-2.

Data-Out Buses - DO[AIB]<#:0> and DOP[AIB]<#:0>

Data-out buses reflect the contents of memory cells referenced by the address bus at the
last active clock edge during a read operation. During a write operation (WRITE_FIRST or
READ_FIRST configuration), the data-out buses reflect either the data-in buses or the
stored value before write. During a write operation in NO_CHANGE mode, data-out
buses are not affected. The regular data-out bus (DO) and the parity data-out bus (DOP)
(when available) have a total width equal to the port width, as shown in Table 4-2.

Cascade - CASCADEIN[AIB]

The CASCADEIN pins are used to connect two block RAMs to form the 32K x 1 mode. This
pin is used when the block RAM is the UPPER block RAM, and is connected to the
CASCADEOUT pins of the LOWER block RAM. When cascade mode is not used, this pin
does not need to be connected. Refer to the “Cascadable Block RAM” for further
information.

Cascade - CASCADEOUTI[AIB]

The CASCADEOUT pins are used to connect two block RAMs to form the 32K x 1 mode.
This pin is used when the block RAM is the LOWER block RAM, and is connected to the
CASCADEIN pins of the UPPER block RAM. When cascade mode is not used, this pin
does not need to be connected. Refer to the “Cascadable Block RAM” for further
information.

Inverting Control Pins

GSR

For each port, the five control pins (CLK, EN, WE, REGCE, and SSR) each have an
individual inversion option. Any control signal can be configured as active High or Low,
and the clock can be active on a rising or falling edge (active High on rising edge by
default) without requiring other logic resources.

The global set/reset (GSR) signal of a Virtex-4 device is an asynchronous global signal that
is active at the end of device configuration. The GSR can also restore the initial Virtex-4
FPGA state at any time. The GSR signal initializes the output latches to the INIT, or to the
INIT_A and INIT_B value (see “Block RAM Attributes”). A GSR signal has no impact on
internal memory contents. Because it is a global signal, the GSR has no input pin at the
functional level (block RAM primitive).

Unused Inputs

Unused Data and/or address inputs should be tied High.

126

www.Xxilinx.com Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

2:)(||_|NX® Block RAM Address Mapping

Block RAM Address Mapping

Each port accesses the same set of 18,432 memory cells using an addressing scheme
dependent on the width of the port. The physical RAM locations addressed for a particular
width are determined using the following formula (of interest only when the two ports use
different aspect ratios):

END = ((ADDR + 1) * width) - 1
START= ADDR * Width

Table 4-3 shows low-order address mapping for each port width.

Table 4-3: Port Address Mapping

Port Parity Data Locations

Width | Locations
1 N.A. 3113029 (28|27 |26(25|24(23|22|21|20(19|18|17|16|15|14 |13 |12|11|10|9|8|7|6|5/4|3/2/1|0
2 15 14 13 12 11 10 9 8 7 6 5 4 1312|110
4 7 6 5 4 3 2 1 0

8+1 (3|2(1]0 3 2 1 0

16+2| 1 0 1 0

32+4 0 0

Block RAM Attributes

All attribute code examples are shown in the “Block RAM VHDL and Verilog Templates”
section. Further information on using these attributes is available in the “Additional
RAMB16 Primitive Design Considerations” section.

Content Initialization - INIT_xx

INIT_xx attributes define the initial memory contents. By default block RAM memory is
initialized with all zeros during the device configuration sequence. The 64 initialization
attributes from INIT_00 through INIT_3F represent the regular memory contents. Each
INIT_xx is a 64-digit hex-encoded bit vector. The memory contents can be partially
initialized and are automatically completed with zeros.

The following formula is used for determining the bit positions for each INIT_xx attribute.

Given yy = conversion hex-encoded to decimal (xx), INIT_xx corresponds to the memory
cells as follows:

e from [(yy +1) *256] -1
e to(yy) *256

For example, for the attribute INIT_1F, the conversion is as follows:

e yy = conversion hex-encoded to decimal X”1F” = 31
e from [(31+1) * 256] -1 = 8191
e to31%*256="7936

More examples are given in Table 4-4.

Virtex-4 FPGA User Guide www.Xxilinx.com 127
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 4: Block RAM & XILINX®

Table 4-4: Block RAM Initialization Attributes

Memory Location
Attribute
From To

INIT_00 255 0
INIT_01 511 256
INIT_02 767 512
INIT_OE 3839 3584
INIT_OF 4095 3840
INIT_10 4351 4096
INIT_1F 8191 7936
INIT_20 8447 8192
INIT_2F 12287 12032
INIT_30 12543 12288
INIT_3F 16383 16128

Content Initialization - INITP_xx

INITP_xx attributes define the initial contents of the memory cells corresponding to
DIP/DOP buses (parity bits). By default these memory cells are also initialized to all zeros.
The eight initialization attributes from INITP_00 through INITP_07 represent the memory
contents of parity bits. Each INITP_xx is a 64-digit hex-encoded bit vector with a regular
INIT_xx attribute behavior. The same formula can be used to calculate the bit positions
initialized by a particular INITP_xx attribute.

Output Latches Initialization - INIT (INIT_A & INIT_B)

The INIT (single-port) or INIT_A and INIT_B (dual-port) attributes define the output
latches values after configuration. The width of the INIT (INIT_A & INIT_B) attribute is
the port width, as shown in Table 4-5. These attributes are hex-encoded bit vectors, and the
default value is 0.

Output Latches Synchronous Set/Reset - SRVAL (SRVAL_A & SRVAL_B)

The SRVAL (single-port) or SRVAL_A and SRVAL_B (dual-port) attributes define output
latch values when the SSR input is asserted. The width of the SRVAL (SRVAL_A and
SRVAL_B) attribute is the port width, as shown in Table 4-5. These attributes are hex-
encoded bit vectors, and the default value is 0. This attribute is not available when the
optional output register attribute is set.

128 www.Xxilinx.com Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

S XILINX® Block RAM Attributes

Table 4-5: Port Width Values

Port Data Width DOP Bus DO Bus INIT / SRVAL
1 NA <0> 1
2 NA <1:0> 2
4 NA <3:0> 4
9 <0> <7:0> 1+8)=9
18 <1:0> <15:0> 2+16)=18
36 <3:0> <31:0> (4+32)= 36

Optional Output Register On/Off Switch - DO[AIB]_REG

This attribute sets the number of pipeline register at A/B output of RAMB16. The valid
values are 0 (default) or 1.

Clock Inversion at Output Register Switch - INVERT_CLK_DOJAIB]_REG

When set to TRUE, the clock input to the pipeline register at A/B output of RAMB16 is
inverted. The default value is FALSE.

Extended Mode Address Determinant - RAM_EXTENSION_[AIB]

This attribute determines whether the block RAM of interest has its A/B port as
UPPER/LOWER address when using the cascade mode. Refer to the “Cascadable Block
RAM” section. When the block RAM is not used in cascade mode, the default value is
NONE.

Read Width - READ_WIDTH_[AIB]
This attribute determines the A /B read port width of the block RAM. The valid values are:
0 (default), 1,2, 4,9, 18, and 36.

Write Width - WRITE_WIDTH_[AIB]

This attribute determines the A /B write port width of the block RAM. The valid values are:
0 (default), 1,2, 4,9, 18, and 36.

Write Mode - WRITE_MODE_[AIB]

This attribute determines the write mode of the A/B input ports. The possible values are
WRITE_FIRST (default), READ_FIRST, and NO_CHANGE. Additional information on the
write modes is in the “Operating Modes” section.

Block RAM Location Constraints

Block RAM instances can have LOC properties attached to them to constrain placement.
Block RAM placement locations differ from the convention used for naming CLB locations,
allowing LOC properties to transfer easily from array to array.

Virtex-4 FPGA User Guide www.Xxilinx.com 129
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 4: Block RAM & XILINX®

The LOC properties use the following form:
LOC = RAMB1l6_X#Y#

The RAMB16_X0YO0 is the bottom-left block RAM location on the device. If RAMB16 is
constrained to RAMB16_X#Y#, the FIFO cannot be constrained to FIFO16_X#Y# since they
share a location. An example location constraint is shown in the “Block RAM VHDL and
Verilog Templates” section.

Block RAM Initialization in VHDL or Verilog Code

Block RAM memory attributes and content can be initialized in VHDL or Verilog code for
both synthesis and simulation by using generic maps (VHDL) or defparams (Verilog)
within the instantiated component. Modifying the values of the generic map or defparam
affects both the simulation behavior and the implemented synthesis results.

Block RAM VHDL and Verilog Templates

The following template is a RAMB16 example in both VHDL and Verilog. This primitive is
the building block for all different sizes of block RAM.

RAMB16 VHDL Template
-— RAMB16 : To incorporate this function into the design,
-- VHDL : following instance declaration needs to be placed in
-— instance : the architecture body of the design code. The
-- declaration : (RAMBl6_inst) and/or the port declarations
- code : after the "=>" assignment can be changed to properly
-— : reference and connect this function to the design.
-- : All inputs and outputs must be connected.
-- Library : In addition to adding the instance declaration, a use
-- declaration : statement for the UNISIM.v components library needs
-— for : to be added before the entity declaration. This library
-— Xilinx : contains the component declarations for all Xilinx
-— primitives : primitives and points to the models that will be used

-- : for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exist.

Library UNISIM;
use UNISIM.vcomponents.all;

-- <--Cut code below this line and paste into the architecture body-->

-- RAMB1l6: Virtex-4 16k+2k Parity Paramatizable Block RAM
-- Virtex-4 FPGA User Guide

RAMB16_inst : RAMB16

generic map (
DOA_REG => 0, -- Optional output registers on the A port (0 or 1)
DOB_REG => 0, -- Optional output registers on the B port (0 or 1)
INIT A => X"000000000", -- 1Initial values on A output port
INIT B => X"000000000", -- 1Initial wvalues on B output port
INVERT_CLK_DOA_REG => FALSE, -- Invert clock on A port output
registers (TRUE or FALSE)

130 www.Xxilinx.com Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

SOXILINX®

Block RAM VHDL and Verilog Templates

INVERT_CLK_DOB_REG => FALSE,
registers (TRUE or FALSE)
RAM_EXTENSION_A => "NONE",
cascaded

RAM_EXTENSION_B => "NONE",
cascaded

READ WIDTH A => 0, -- Valid

READ WIDTH B => 0, -- Valid
SRVAL_A => X"000000000", --
SRVAL_B => X"000000000", --

-- Invert clock on B port output

"UPPER", "LOWER" or "NONE" when

"UPPER", "LOWER" or "NONE" when
values are 1,2,4,9,18 or 36

values are 1,2,4,9,18 or 36

Port A ouput value upon SSR assertion

Port B ouput value upon SSR assertion

WRITE_MODE_A => "WRITE_FIRST", -- "WRITE FIRST",
"NO_CHANGE"

WRITE_MODE_B => "WRITE_FIRST",
"NO_CHANGE"
WRITE_WIDTH A => 2,
WRITE_WIDTH B => 0,
INIT_00 =>

X"00 ™,
INIT 01 =>
X"00 ™",
INIT 02 =>
X"00 ™,
INIT 03 =>
X"00 ™,
INIT 04 =>
X"00 ™,
INIT 05 =>
X"00 ™,
INIT 06 =>
X"00 ™,
INIT 07 =>
X"00 ™,
INIT 08 =>
X"00 ™,
INIT_09 =>
X"00 ™,
INIT OA =>
X"00 ™,
INIT 0B =>
X"00 ™,
INIT_0C =>
X"00 ™,
INIT 0D =>
X"00 ™,
INIT OE =>
X"00 ™,
INIT_OF =>
X"00 ™,
INIT 10 =>
X"00 ™,
INIT 11 =>
X"00 ™,
INIT 12 =>
X"00 ™,
INIT 13 =>
X"00 ™,
INIT 14 =>
X"00 ™,

"WRITE_FIRST",

-- Valid values are 1,2,4,9,18 or 36
-- Valid values are 1,2,4,9,18 or 36

Virtex-4 FPGA User Guide

www.Xxilinx.com 131

UGO070 (v2.6) December 1, 2008

"READ_FIRST" or

"READ_FIRST" or

http://www.xilinx.com

Chapter 4: Block RAM

SIXILINX®

INIT 15 =>
X"00 ™,
INIT 16 =>
X"00 ™,
INIT 17 =>
X"00 ™,
INIT 18 =>
X"00 ™,
INIT 19 =>
X"00 ™,
INIT 1A =>
X"00 ™,
INIT 1B =>
X"00 ™,
INIT_1C =>
X"00 ™,
INIT 1D =>
X"00 ™,
INIT 1E =>
X"00 ™",
INIT_1F =>
X"00 ™,
INIT 20 =>
X"00 ™,
INIT 21 =>
X"00 ™,
INIT 22 =>
X"00 ™,
INIT 23 =>
X"00 ™,
INIT 24 =>
X"00 ™,
INIT 25 =>
X"00 ™,
INIT 26 =>
X"00 ™,
INIT 27 =>
X"00 ™,
INIT 28 =>
X"00 ™,
INIT 29 =>
X"00 ™,
INIT 2A =>
X"00 ™,
INIT 2B =>
X"00 ™,
INIT 2C =>
X"00 ™,
INIT 2D =>
X"00 ™,
INIT 2E =>
X"00 ™,
INIT_2F =>
X"00 ™,
INIT 30 =>
X"00 ™,
INIT 31 =>
X"00 ™,

132

www.Xxilinx.com

Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

SOXILINX®

Block RAM VHDL and Verilog Templates

INIT 32 =>

X"00",

INIT_33 =>

X"00",

INIT 34 =>

X"00",

INIT 35 =>

X"00",

INIT_36 =>

X"00",

INIT 37 =>

X"00",

INIT 38 =>

X"00",

INIT_39 =>

X"00",

INIT 3A =>

X"00",

INIT 3B =>

X"00",

INIT_3C =>

X"00",

INIT 3D =>

X"00",

INIT 3E =>

X"00",

INIT_3F =>

X"00",

INITP 00 =>

X"00",

INITP 01 =>

X"00",

INITP_02 =>

X"00",

INITP 03 =>

X"00",

INITP 04 =>

X"00",

INITP_05 =>

X"00",

INITP 06 =>

X"00",

INITP_ 07 =>

X"00™)

port map (

CASCADEOUTA => CASCADEOUTA,
CASCADEOUTB => CASCADEOUTB,

DOA => DOA,

DOB => DOB,
DOPA => DOPA,
DOPB => DOPB,
ADDRA => ADDRA,
ADDRB => ADDRB,

-- 1-bit cascade output
-- 1-bit cascade output
-- 32-bit A port Data Output

-- 32-bit B port Data Output

-- 4-bit A port Parity Output

-- 4-bit B port Parity Output

-- 15-bit A port Address Input

-- 15-bit B port Address Input

CASCADEINA => CASCADEINA, -- 1l-bit cascade A input

CASCADEINB => CASCADEINB,

CLKA => CLKA,
CLKB => CLKB,
DIA => DIA,
DIB => DIB,

-- 1-bit cascade B input
-- Port A Clock

-- Port B Clock

-- 32-bit A port Data Input

-- 32-bit B port Data Input

Virtex-4 FPGA User Guide

www.Xxilinx.com 133

UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 4: Block RAM

SIXILINX®

DIPA => DIPA, -- 4-bit A port parity Input
DIPB => DIPB, -- 4-bit B port parity Input
ENA => ENA, -- 1-bit A port Enable Input
ENB => ENB, -- 1-bit B port Enable Input
REGCEA => REGCEA, -- 1-bit A port register enable input
REGCEB => REGCEB, -- 1l-bit B port register enable input
SSRA => SSRA, -- 1-bit A port Synchronous Set/Reset Input
SSRB => SSRB, -- 1-bit B port Synchronous Set/Reset Input
WEA => WEA, -- 4-bit A port Write Enable Input
WEB => WEB -- 4-bit B port Write Enable Input
)
-- End of RAMB16_inst instantiation

RAMB16 Verilog Template

// RAMB16 To incorporate this function into the design,
// Verilog the following instance declaration needs to be placed
// instance in the body of the design code. The instance name
// declaration (RAMB_inst) and/or the port declarations within the
// code parenthesis can be changed to properly reference and
// connect this function to the design. All inputs
// and outputs must be connected.
// <-———= Cut code below this line---->
// RAMB1l6: Virtex-4 16k+2k Parity Paramatizable Block RAM
// Virtex-4 FPGA User Guide
RAMB16 # (
.DOA_REG(0), // Optional output registers on A port (0 or 1)
.DOB_REG(0), // Optional output registers on B port (0 or 1)
INIT_A(36'h000000000), // Initial values on A output port
.INIT_B(36'h000000000), // Initial values on B output port

.INVERT_CLK_DOA_REG ("FALSE"),// Invert clock on

A port output

registers
("TRUE" or "FALSE")
.INVERT_CLK_DOB_REG("FALSE"),// Invert clock on A port output
registers
("TRUE" or "FALSE")
.RAM_EXTENSION_A ("NONE"), // "UPPER", "LOWER" or "NONE" when
cascaded
.RAM_EXTENSION_B ("NONE"), // "UPPER", "LOWER" or "NONE" when
cascaded
.READ_WIDTH_A(0), // Valid values are 1, 2, 4, 9, 18, or 36
.READ_WIDTH B(0), // Valid values are 1, 2, 4, 9, 18, or 36

.SRVAL_A (36"
.SRVAL_B (36"

.WRITE_MODE_A ("WRITE_FIRST"),

"NO_CHANGE"

.WRITE_MODE_B ("WRITE_FIRST"),

"NO_CHANGE"

.WRITE _WIDTH A (0),
.WRITE_WIDTH_B(0),

h000000000), // Set/Reset value for A port output
h000000000), // Set/Reset value for B port output
// "WRITE_FIRST", "READ_FIRST", or
// "WRITE_FIRST", "READ_FIRST", or
// Valid values are 1, 2, 4, 9, 18, or 36
// Valid values are 1, 2, 4, 9, 18, or 36

// The following INIT_xx declarations specify the initial contents

of the RAM

134

Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

www.Xxilinx.com

http://www.xilinx.com

SOXILINX®

Block RAM VHDL and Verilog Templates

.INIT_00(256'h00
00000000) ,

.INIT_01(256'h00
00000000) ,

.INIT_02(256'h00
00000000) ,

.INIT_03(256'h00
00000000) ,

.INIT_04(256'h00
00000000) ,

.INIT_05(256'h00
00000000) ,

.INIT_06(256'h00
00000000) ,

.INIT_07(256'h00
00000000) ,

.INIT_08(256'h00
00000000) ,

.INIT_09(256'h00
00000000) ,

.INIT_O0A(256'h00
00000000) ,

.INIT_0B(256'h00
00000000) ,

.INIT_0C(256'h00
00000000) ,

.INIT_0D(256'h00
00000000) ,

.INIT_OE(256'h00
00000000) ,

.INIT_OF (256'h00
00000000) ,

.INIT_10(256'h00
00000000) ,

.INIT_11(256'h00
00000000) ,

LINIT _12(256'h00
00000000) ,

Virtex-4 FPGA User Guide

www.Xxilinx.com 135

UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 4: Block RAM

SIXILINX®

.INIT_13(256'h00
00000000) ,

.INIT_14(256'h00
00000000) ,

.INIT_15(256'h00
00000000) ,

.INIT_16(256'h00
00000000) ,

INIT_17(256'h00
00000000) ,

.INIT_18(256'h00
00000000) ,

LINIT_19(256'h00
00000000) ,

.INIT_1A(256'h00
00000000) ,

.INIT_1B(256'h00
00000000) ,

.INIT_1C(256'h00
00000000) ,

.INIT_1D(256'h00
00000000) ,

.INIT_1E(256'h00
00000000) ,

LINIT_1F(256'h00
00000000) ,

.INIT_20(256'h00
00000000) ,

.INIT_21(256'h00
00000000) ,

.INIT_22(256'h00
00000000) ,

.INIT_23(256'h00
00000000) ,

.INIT_24(256'h00
00000000) ,

.INIT_25(256'h00
00000000) ,

136

www.Xxilinx.com Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

SOXILINX®

Block RAM VHDL and Verilog Templates

.INIT_26(256'h00
00000000) ,

.INIT_27(256'h00
00000000) ,

.INIT_28(256'h00
00000000) ,

.INIT_29(256'h00
00000000) ,

.INIT_2A(256'h00
00000000) ,

.INIT_2B(256'h00
00000000) ,

.INIT_2C(256'h00
00000000) ,

.INIT_2D(256'h00
00000000) ,

.INIT_2E(256'h00
00000000) ,

.INIT_2F (256'h00
00000000) ,

.INIT_30(256'h00
00000000) ,

.INIT_31(256'h00
00000000) ,

.INIT_32(256'h00
00000000) ,

.INIT_33(256'h00
00000000) ,

.INIT_34(256'h00
00000000) ,

.INIT_35(256'h00
00000000) ,

.INIT_36(256'h00
00000000) ,

.INIT_37(256'h00
00000000) ,

.INIT _38(256'h00
00000000) ,

Virtex-4 FPGA User Guide

www.Xxilinx.com 137

UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 4: Block RAM

SIXILINX®

.INIT_39(256'h00
00000000) ,

.INIT_3A(256'h00
00000000) ,

.INIT_3B(256'h00
00000000) ,

.INIT_3C(256'h00
00000000) ,

.INIT_3D(256'h00
00000000) ,

.INIT_3E(256'h00
00000000) ,

.INIT_3F(256'h00
00000000) ,

// The next set of INITP_xx are for the parity bits

.INITP_00(256'h000
000000000) ,

.INITP_01(256'h000
000000000),

.INITP_02(256'h000
000000000) ,

.INITP_03(256'h000
000000000),

.INITP_04(256'h000
000000000) ,

.INITP_05(256'h000
000000000),

.INITP_06(256'h000
000000000) ,

.INITP_07(256'h000

000000000)
) RAMB1l6_inst (

.CASCADEOUTA (CASCADEOUTA), // 1l-bit cascade output
.CASCADEOUTB (CASCADEOUTB), // 1l-bit cascade output
.DOA (DOA) , // 32-bit A port data output

.DOB (DOB) , // 32-bit B port data output

.DOPA (DOPA) , // 4-bit A port parity data output
.DOPB (DOPB) , // 4-bit B port parity data output
.ADDRA (ADDRA), // 15-bit A port address input
.ADDRB (ADDRB), // 15-bit B port address input

.CASCADEINA (CASCADEINA), // 1-bit cascade A input
.CASCADEINB (CASCADEINB), // 1l-bit cascade B input
.CLKA (CLKA) , // 1l-bit A port clock input

138

www.Xxilinx.com Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

2:)(||_|NX® Additional RAMB16 Primitive Design Considerations

.CLKB (CLKB) , // 1-bit B port clock input
.DIA(DIA), // 32-bit A port data input
.DIB(DIB), // 32-bit B port data input
.DIPA(DIPA), // 4-bit A port parity data input
.DIPB(DIPB), // 4-bit B port parity data input
.ENA (ENA) , // 1-bit A port enable input

.ENB (ENB) , // 1-bit B port enable input

.REGCEA (REGCEA), // 1l-bit A port register enable input
.REGCEB (REGCEB), // 1l-bit B port register enable input
.SSRA (SSRA) , // 1-bit A port set/reset input
.SSRB(SSRB) , // 1l-bit B port set/reset input

.WEA (WEA) , // 4-bit A port write enable input
.WEB (WEB) // 4-bit B port write enable input

)

// End of RAMB16_inst instantiation

Additional RAMB16 Primitive Design Considerations

The RAMBI16 primitive is part of the Virtex-4 FPGA block RAM solution.

Data Parity Buses - DIP[A/B] and DOP[A/B]

The data parity buses are additional pins used for data parity with incoming data into the
block RAM. The block RAM does not generate the parity bits for incoming data. These are
supplied by the user. If not supplying parity bits, the pins can be used for incoming data.

Optional Output Registers

Optional output registers can be used at either or both A/B output ports of RAMB16. The
choice is made using the DO[A /B]_REG attribute. There is also an option to invert the
clocks for either or both of the A/B output registers using the

INVERT_CLK_DOJ[A /B]_REG attribute. The two independent clock enable pins are
REGCE[A/B]. When using the optional output registers at port [A | B], the synchronous
set/reset (SSR) pin of ports [A | B] can not be used. Figure 4-5 shows a optional output
register.

Independent Read and Write Port Width

To specify the port widths, designers must use the READ_WIDTH_[A/B] and
WRITE_WIDTH_[A /B] attributes. The following rules should be considered:

e Designing a single port block RAM requires the port pair widths of one write and one
read to be set (e.g., READ_WIDTH_A and WRITE_WIDTH_A).

e Designing a dual-port block RAM requires all port widths to be set.

e When using these attributes, if both write ports or both read ports are set to 0, the
ISE® tools will not implement the design.

RAMB16 Port Mapping Design Rules

The Virtex-4 FPGA block RAM can be configurable to various port widths and sizes.
Depending on the configuration, some data pins and address pins are not used. Table 4-2,
page 125 shows the pins used in various configurations. In addition to the information in
Table 4-2, the following rules are useful to determine port connections:

Virtex-4 FPGA User Guide www.Xxilinx.com 139
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 4: Block RAM

SIXILINX®

If the DI[A | B] pins are less than 32 bits wide, concatenate (32 - DI_BIT_WIDTH) logic
zeros to the front of DI[A | B].

If the DIP[A | B] pins are less than 4 bits wide, concatenate (4 — DIP_BIT_WIDTH) logic
zeros to the front of DIP[A | B]. DIP[A | B] is unconnected when not in use.

DOJA | B] pins must be 32 bits wide. However, valid data are only found on pins 0 to
DO_BIT_WIDTH.

DOPI[A | B] pins must be 4 bits wide. However, valid data are only found on pins 0 to
DO_BIT_WIDTH. DOP[A | B] is unconnected when not in use.

ADDR[A | B] pins must be 15 bits wide. However, valid addresses for non-cascadable
block RAM are only found on pins 13 to (14 — address width). The remaining pins,
including pin 14, should be tied High.

Cascadable Block RAM
To use the cascadable block RAM feature:

1.
2.

Two RAMB16 primitives must be instantiated.

Set the RAM_EXTENSION_A and RAM_EXTENSION_B attribute for one RAMB16 to
UPPER, and another to LOWER.

Connect the upper RAMB16’s CASCADEINA and CASCADEINB ports to the
CASCADEOUTA and CASCADEOUTSB ports of the lower RAMB16. The
CASCADEOUT ports for the upper RAMB16 do not require a connection. Connect the
CASCADEIN ports for the lower RAMB16 to either logic High or Low.

The data output ports of the lower RAMB16 are not used. These pins are unconnected.

If placing location constraints on the two RAMB16s, they must be adjacent. If no
location constraint is specified, the ISE software will automatically manage the
RAMB16 locations.

The address pins ADDR[A | B] must be 15 bits wide. Both read and write ports must be
one bit wide.

Figure 4-6 shows the cascadable block RAM.

Byte-Write Enable

The following rules should be considered when the following when using the byte-write
enable feature:

In x36 mode, WE[3:0] is connected to the four user WE inputs.

In x18 mode, WE[0] and WE[2] are connected and driven by the user WE[0], while
WE[1], and WE[3] are driven by the user WE[1].

In x9, x4, x2, x1, WE[3:0] are all connected to a single user WE.

Figure 4-8 shows a byte-write enabled block RAM.

140

www.Xxilinx.com Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

S XILINX® Additional Block RAM Primitives

Additional Block RAM Primitives

In addition to RAMB16, some added block RAM primitives are available for Virtex-4
FPGA designers allowing the implementation of various block RAM sizes with preset
configurations.

The input and output data buses are represented by two buses for 9-bit width (8+1), 18-bit
width (16+2), and 36-bit width (32+4) configurations. The ninth bit associated with each
byte can store parity or error correction bits. No specific function is performed on this bit.

The separate bus for parity bits facilitates some designs. However, other designs safely use
a 9-bit, 18-bit, or 36-bit bus by merging the regular data bus with the parity bus.
Read/write and storage operations are identical for all bits, including the parity bits.

Some block RAM attributes can only be configured using the RAMB16 primitive (e.g.,
pipeline register, cascade, etc.). See the “Block RAM Attributes” section.

Figure 4-10 shows the generic dual-port block RAM primitive. DIA, DIPA, ADDRA, DOA,
DOPA, and the corresponding signals on port B are buses.

RAMB16_SX_SY

DIA[X:0]
DIPA[X:0]
ADDRA[X:0] DOA[#:0] f——
WEA DOPA[#:0] f—
ENA
SSRA
CLKA

] C
DIB[Y:0]
DIPB[Y:0]
ADDRB[Y:0] DOB[#:0]
WEB DOPBI[#:0]

ENB
SSRB
CLKB

ug070_4_10_071204

Figure 4-10: Dual-Port Block RAM Primitive

Table 4-6 lists the available dual-port primitives for synthesis and simulation.

Virtex-4 FPGA User Guide www.Xxilinx.com 141
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 4: Block RAM

SIXILINX®

Table 4-6: Dual-Port Block RAM Primitives

Primitive Port A Width Port B Width
RAMB16_51_S1 1 1
RAMB16_S1_S2 2
RAMB16_51_5S4 4
RAMB16_5S1_S9 (8+1)
RAMB16_S1_S18 (16+2)
RAMB16_S1_S36 (32+4)
RAMB16_S2_S2 2 2
RAMB16_S2_S4 4
RAMB16_S2_S9 (8+1)
RAMB16_52_S18 (16+2)
RAMB16_52_S36 (32+4)
RAMB16_54_S4 4 4
RAMB16_S4_S9 (8+1)
RAMB16_54_S18 (16+2)
RAMB16_S4_S36 (32+4)
RAMB16_S9_S9 (8+1) (8+1)
RAMB16_59_S18 (16+2)
RAMB16_S9_S36 (32+4)
RAMB16_S18_S18 (16+2) (16+2)
RAMB16_S18_S36 (32+4)
RAMB16_536_S36 (32+4) (32+4)

Figure 4-11 shows the generic single-port block RAM primitive. DI, DIP, ADDR, DO, and

DOP are buses.

RAMB16_SX

DI[#:0]
DIP[#:0]
ADDR[#:0]

WE

CLK

EN DO[#:0] f——
SSR DOPI[#:0] ——

UG070_4_11_031308

Figure 4-11: Single-Port Block RAM Primitive

142

www.Xxilinx.com

Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

2:)(||_|NX® Block RAM Applications

Table 4-7 lists all of the available single-port primitives for synthesis and simulation.

Table 4-7: Single-Port Block RAM Primitives

Primitive Port Width
RAMB16_S1 1
RAMB16_S2 2
RAMB16_54 4
RAMB16_S9 (8+1)
RAMB16_S18 (16+2)
RAMB16_S36 (32+4)

Instantiation of Additional Block RAM Primitives

The RAM_Ax templates (with x =1, 2, 4, 9, 18, or 36) are single-port modules and
instantiate the corresponding RAMB16_5Sx module.

RAM_Ax_By templates (withx=1,2,4,9,18,or36 andy==1, 2,4, 9, 18, or 36) are dual-
port modules and instantiate the corresponding RAMB16_Sx_Sy module.

Block RAM Applications

Creating Larger RAM Structures

Block RAM columns have special routing to create wider/deeper blocks with minimal
routing delays. Wider or deeper RAM structures are achieved with a smaller timing
penalty than is encountered when using normal routing resources.

The CORE Generator software offers the designer an easy way to generate wider and
deeper memory structures using multiple block RAM instances. This program outputs
VHDL or Verilog instantiation templates and simulation models, along with an EDIF file
for inclusion in a design.

Block RAM Timing Model

This section describes the timing parameters associated with the block RAM in Virtex-4
devices (illustrated in Figure 4-12). The switching characteristics section in the Virtex-4
Data Sheet and the Timing Analyzer (TRCE) report from Xilinx software are also available
for reference.

Virtex-4 FPGA User Guide www.Xxilinx.com 143
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com
http://www.xilinx.com/bvdocs/publications/ds302.pdf

Chapter 4: Block RAM

SIXILINX®

Block RAM Timing Parameters
Table 4-8 shows the Virtex-4 FPGA block RAM timing parameters.

Table 4-8: Block RAM Timing Parameters

Parameter

Function

Control
Signal

Description

Setup and Hold Relative to Clock (CLK)

Trxck_x = Setup time (before clock edge) and Trcky x = Hold time (after clock edge)

Trcck_ADDR Time before the clock that address signals must be stable at the
ADDR inputs of the block RAM.()
Address inputs | ADDR
Trcke _ADDR Time after the clock that address signals must be stable at the ADDR
inputs of the block RAM.(D)
Trpck DI Time before the clock that data must be stable at the DI inputs of the
block RAM.
Data inputs DI
Trekp DI Time after the clock that data must be stable at the DI inputs of the
block RAM.
Treck EN Time before the clock that the enable signal must be stable at the EN
input of the block RAM.
Enable EN
Treke BN Time after the clock that the enable signal must be stable at the EN
input of the block RAM.
Treck ssr Time before the clock that the synchronous set/reset signal must be
Synchronous stable at the SSR input of the block RAM.
SSR
TRCKC_SSR Set/Reset Time after the clock that the synchronous set/reset signal must be
stable at the SSR input of the block RAM.
Trcck WEN Time before the clock that the write enable signal must be stable at
the WEN input of the block RAM.
Write Enable WEN
Trcxe WEN Time after the clock that the write enable signal must be stable at the
WEN input of the block RAM.
Trcck REGCE Time before the clock that the register enable signal must be stable at
: the REGCE input of the block RAM.
Optional gutglut REGCE p
TRCKC_REGCE Register Enable Time after the clock that the register enable signal must be stable at
the REGCE input of the block RAM.
Sequential Delays
Treko po (Max) | Clock to Output | CLKto | Time after the clock that the output data is stable at the DO outputs
DO of the block RAM (without output register).
Trcxko po Min) | Clock to Output | CLKto | Time after the clock that the output data is stable at the DO outputs
DO of the block RAM (with output register).

Notes:

1. While EN is active, ADDR inputs must be stable during the entire setup /hold time window, even if WEN is inactive. Violating this
requirement can result in block RAM data corruption. If ADDR timing could violate the specified requirements, EN must be

inactive (disabled).

144

Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

www.Xxilinx.com

http://www.xilinx.com

S XILINX® Block RAM Timing Model

Block RAM Timing Characteristics

The timing diagram in Figure 4-12 describes a single-port block RAM in write-first mode
without the optional output register. The timing for read-first and no-change modes are
similar. For timing using the optional output register, an additional clock latency appears
at the DO pin.

1 2 3 4 5

| | | | | | |

CLK |
= r—TF{CCKJ\DDR | | | |

aooR X 00 X OF X 7E X 8F X 20

- ~TRDCK DI | | | |

o X DDDD X ccce X BBBB X AAAA X 0000
I - [JRCKO DO | | | |

DO X MEM@©0) X CCCC* X Mem@e) X 0101**
- ~TRCCK_EN | |
EN | N\
' TRCCK_SSR—~ |- I
|
|

|
|
SSR |
T
|
Il

1 1
L L
| |
| |
| |)4 N |
TRCCK_WEN ~ = : !
WEN)’I | \ |
|

Disabled | Read | Write Read Reset | Disabled

* Write Mode = "WRITE_FIRST"
** SRVAL = 0101 ug070_4_12_071204

Figure 4-12: Block RAM Timing Diagram

At time 0, the block RAM is disabled; EN (enable) is Low.

Clock Event 1

Read Operation

During a read operation, the contents of the memory at the address on the ADDR inputs
are unchanged.

* Trcck apDR before clock event 1, address 00 becomes valid at the ADDR inputs of
the block RAM.

e Attime Trcck pn before clock event 1, enable is asserted High at the EN input of the
block RAM, enabling the memory for the READ operation that follows.

e Attime Trcgo po after clock event 1, the contents of the memory at address 00
become stable at the DO pins of the block RAM.

Clock Event 2

Write Operation

During a write operation, the content of the memory at the location specified by the
address on the ADDR inputs is replaced by the value on the DI pins and is immediately
reflected on the output latches (in WRITE-FIRST mode); EN (enable) is High.

e Attime Trecx appr before clock event 2, address OF becomes valid at the ADDR

inputs of the block RAM.
e Attime Trpcgk pr before clock event 2, data CCCC becomes valid at the DI inputs of
the block RAM.
Virtex-4 FPGA User Guide www.xilinx.com 145

UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 4: Block RAM & XILINX®

e Attime Treex wen before clock event 2, write enable becomes valid at the WEN
following the block RAM.

e Attime Trcxo po after clock event 2, data CCCC becomes valid at the DO outputs of
the block RAM.

Clock Event 4

SSR (Synchronous Set/Reset) Operation

During an SSR operation, initialization parameter value SRVAL is loaded into the output
latches of the block RAM. The SSR operation does NOT change the contents of the memory
and is independent of the ADDR and DI inputs.

e Attime Treck ssr before clock event 4, the synchronous set/reset signal becomes
valid (High) at the SSR input of the block RAM.

e Attime Trcgo po after clock event 4, the SRVAL 0101 becomes valid at the DO
outputs of the block RAM.

Clock Event 5

Disable Operation

Deasserting the enable signal EN disables any write, read, or SSR operation. The disable
operation does NOT change the contents of the memory or the values of the output latches.

e Attime Treck gn before clock event 5, the enable signal becomes valid (Low) at the
EN input of the block RAM.

e After clock event 5, the data on the DO outputs of the block RAM is unchanged.

Block RAM Timing Model

Figure 4-13 illustrates the delay paths associated with the implementation of block RAM.
This example takes the simplest paths on and off chip (these paths can vary greatly
depending on the design). This timing model demonstrates how and where the block
RAM timing parameters are used.

e NET = Varying interconnect delays

e Tiopr = Pad to I-output of IOB delay

o Tioop = O-input of IOB to pad delay

° TBCCKO_O = BUFGCTRL delay

146 www.Xxilinx.com Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

ST XILINX® Built-in FIFO Support

FPGA

S
: Block RAM :
Data —>—1 [(Miopi + NETI + TRock DI | 1y, |
Address —> :[TIOPI + NET] + TRcck_ADDR ADDR :
Write Enable —, ; [TiOPI + NET] + TRcck WEN |\ |
Enable = : [Tiopi + NET] + TRcok_EN EN :

Synchronous —,__; [Tiop1+ NETI+ Treek ssR | ggp

Set/Reset | CLK bo |LRCKo. Do + [NET + T|oopj < Data
| |
|
: [Teccko_o + NET] F |
| |
| BUFGCTRL |
| |
Clock T NET] :
IoPI +

L o _

ug070_4_13_080204

Figure 4-13: Block RAM Timing Model

Built-in FIFO Support

A large percentage of FPGA designs use block RAMs to implement FIFOs. In the Virtex-4
architecture, dedicated logic in the block RAM enables users to easily implement
synchronous or asynchronous FIFOs. This eliminates the need for additional CLB logic for
counter, comparator, or status flag generation, and uses just one block RAM resource per
FIFO. Both standard and first-word fall-through (FWFT) modes are supported.

The supported configurations are 4K x 4, 2K x 9, 1K x 18, and 512 x 36.

The block RAM can be configured as first-in/first-out (FIFO) memory with common or
independent read and write clocks. Port A of the block RAM is used as a FIFO read port,
and Port B is a FIFO write port. Data is read from the FIFO on the rising edge of read clock
and written to the FIFO on the rising edge of write clock. Independent read and write port
width selection is not supported in FIFO mode without the aid of external CLB logic.

The FIFO offers a very simple user interface. The design relies on free-running write and
read clocks, of identical or different frequencies up to the specified maximum frequency
limit. The design avoids any ambiguity, glitch, or metastable problems, even when the two
frequencies are completely unrelated.

The write operation is synchronous, writing the data word available at DI into the FIFO
whenever WREN is active a setup time before the rising WRCLK edge.

The read operation is also synchronous, presenting the next data word at DO whenever the
RDEN is active one setup time before the rising RDCLK edge.

Data flow control is automatic; the user need not be concerned about the block RAM
addressing sequence, although WRCOUNT and RDCOUNT are also brought out, if
needed for unusual applications.

The user must, however, observe the FULL and EMPTY flags, and stop writing when
FULL is High, and stop reading when EMPTY is High. If these rules are violated, an active
WREN while FULL is High will activate the WRERR flag, and an active RDEN while
EMPTY is High will activate the RDERR flag. In either violation, the FIFO content will,
however, be preserved, and the address counters will stay valid.

Virtex-4 FPGA User Guide www.Xxilinx.com 147
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 4: Block RAM & XILINX®

Programmable ALMOSTFULL and ALMOSTEMPTY flags are brought out to give the user
an early warning when the FIFO is approaching its limits. Both these flag values can be set
by configuration to (almost) anywhere in the FIFO address range.

Two operating modes affect the reading of the first word after the FIFO was empty:

¢ In Standard mode, the first word written into an empty FIFO will appear at DO after
the user has activated RDEN. The user must “pull” the data out of the FIFO.

e In FWFT mode, the first word written into an empty FIFO will automatically appear
at DO without the user activating RDEN. The FIFO “pushes” the data onto DO. The
next RDEN will then “pull” the subsequent data word onto DO.

EMPTY Latency

The rising edge of EMPTY is fast, and inherently synchronous with RDCLK. The empty
condition can only be terminated by WRCLK, asynchronous to RDCLK. The falling edge of
EMPTY must, therefore, artificially be moved onto the RDCLK time domain. Since the two
clocks have an unknown phase relationship, it takes several cascaded flip-flops to
guarantee that such a move does not cause glitches or metastable problems. The falling
edge of EMPTY is thus delayed by several RDCLK periods after the first write into the
previously empty FIFO. This delay guarantees proper operation under all circumstances,
and causes an insignificant loss of performance after the FIFO had gone empty.

Table 4-9 shows the FIFO capacity in the two modes.
Table 4-9: FIFO Capacity

Standard Mode FWFT Mode
4k+1 entries by 4 bits 4k+2 entries by 4 bits
2k+1 entries by 9 bits 2k+2 entries by 9 bits
1k+1 entries by 18 bits 1k+2 entries by 18 bits
512+1 entries by 36 bits 51242 entries by 36 bits
148 www.xilinx.com Virtex-4 FPGA User Guide

UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

2:)(||_|NX® Top-Level View of FIFO Architecture

Top-Level View of FIFO Architecture

Figure 4-14 shows a top-level view of the Virtex-4 FIFO architecture. The read pointer,
write pointer, and status flag logic are dedicated for FIFO use only.

|
wrcount <«—+ : rdcount
I [Write Block RAM Read | |
: Pointer Core Pointer :
| |
I [
' 3 3 |
| 3 |5 |2 |
DIN —| 5 |k '— DO
=1 @ |
| > |
rclk —! L rdclk
W I Status Flag [q
wren | Logic i rden
reset — |
R T -
oM OgS
=3:883
< T 7
<

UG070_4_14_030708

Figure 4-14: Top-Level View of FIFO in Block RAM

FIFO Primitive

Figure 4-15 shows the FIFO16 primitive.

FIFO16

—— DI[31:0] DO[31:0] f——
—— DIP[3:0] DOP[3:0] ——
— RDEN WRCOUNT[11:0] ——
—{ RpCLK RDCOUNT[11:0] f——
— WREN FULL |——
— wRcLk EMPTY |———
——RsT ALMOSTFULL |——
ALMOSTEMPTY |——

RDERR |——

WRERR |——

ug070_4_15_071204

Figure 4-15: FIFO16 Primitive

Virtex-4 FPGA User Guide www.Xxilinx.com
UGO070 (v2.6) December 1, 2008

149

http://www.xilinx.com

Chapter 4: Block RAM & XILINX®

FIFO Port Descriptions

Table 4-10 lists the FIFO I/O port names and descriptions.

Table 4-10: FIFO I/O Port Names and Descriptions

Port Name Direction Description

DI Input | Data input.

DIP Input | Parity-bit input.

WREN Input Write enable. When WREN = 1, data will be written to
memory. When WREN = 0, write is disabled.

WRCLK Input | Clock for write domain operation.

RDEN Input Read enable. When RDEN = 1, data will be read to output
register. When RDEN = 0, read is disabled.

RDCLK Input | Clock for read domain operation.

RESET Input | Asynchronous reset of all FIFO functions, flags, and
pointers.

DO Output | Data output, synchronous to RDCLK.

DOP Output | Parity-bit output, synchronous to RDCLK.

FULL Output | All entries in FIFO memory are filled. No additional write
enable is performed. Synchronous to WRCLK.

ALMOSTFULL Output | Almost all entries in FIFO memory have been filled.
Synchronous to WRCLK. The offset for this flag is user
configurable.

EMPTY Output | FIFO is empty. No additional read can be performed.
Synchronous to RDCLK.

ALMOSTEMPTY | Output | Almost all valid entries in FIFO have been read.
Synchronous with RDCLK. The offset for this flag is user
configurable.

RDCOUNT Output | The FIFO data read pointer. It is synchronous with RDCLK.
The value will wrap around if the maximum read pointer
value has been reached.

WRCOUNT Output | The FIFO data write pointer. It is synchronous with
WRCLK. The value will wrap around if the maximum write
pointer value has been reached.

WRERR Output | When the FIFO is full, any additional write operation
generates an error flag. Synchronous with WRCLK.

RDERR Output | When the FIFO is empty, any additional read operation
generates an error flag. Synchronous with RDCLK.

150 www.Xxilinx.com Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

2:)(||_|NX® FIFO Operations

FIFO Operations

Reset

Reset is an asynchronous signal to reset all read and write address counters, and must be
asserted to initialize flags after power up. Reset does not clear the memory, nor does it clear
the output register. When reset is asserted High, EMPTY and ALMOST_EMPTY will be set
to 1, FULL and ALMOST_FULL will be reset to 0. The reset signal must be High for at least
three read clock and write clock cycles to ensure all internal states are reset to the correct
values. During RESET, RDEN and WREN must be held Low.

Operating Mode

There are two operating modes in FIFO functions. They differ only in output behavior after
the first word is written to a previously empty FIFO.

Standard Mode

After the first word is written into an empty FIFO, the Empty flag deasserts synchronously
with RDCLK. After Empty is deasserted Low and RDEN is asserted, the first word will
appear at DO on the rising edge of RDCLK.

First Word Fall Through (FWFT) Mode

After the first word is written into an empty FIFO, it automatically appears at DO without
asserting RDEN. Subsequent Read operations require Empty to be Low and RDEN to be
High. Figure 4-16 illustrates the difference between standard mode and FWFT mode.

RDEN I / ;

EMPTY |\

DO (Standard)

\
| % wi
\
Xowe

Previous Data W3

|
| |
| |
| |
| |
| | l |
. .
f f f X
]]]
| | |
I I I X
! ! !
+ +
ug070_4_16_071204

Figure 4-16: Read Cycle Timing (Standard and FWFT Modes)

DO (FWFT) W1

Status Flags
Empty Flag

The Empty flag is synchronous with RDCLK, and is asserted when the last entry in the
FIFO is read. When there are no more valid entries in the FIFO queue, the read pointer will
be frozen. The Empty flag is deasserted at three (in standard mode) or four (in FWFT
mode) read clocks after new data is written into the FIFO.

Virtex-4 FPGA User Guide www.Xxilinx.com 151
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 4: Block RAM & XILINX®

ALMOSTEMPTY Flag

The ALMOSTEMPTY flag is set when the FIFO contains the number of entries specified by
the ALMOST_EMPTY_OFFSET value (or fewer), warning the user to stop reading. The
ALMOSTEMPTY flag deasserts three clock cycles after the number of entries in the FIFO
becomes greater than the ALMOST_EMPTY_OFFSET value. It is synchronous to RDCLK.

Read Error Flag

Once the Empty flag has been asserted, any further read attempts will not increment the
read address pointer but will trigger the Read Error flag. The Read Error flag is deasserted
when Read Enable or Empty is deasserted Low. The Read Error flag is synchronous to
RDCLK.

Full Flag

The Full flag is synchronous with WRCLK, and is asserted one WRCLK after there are no
more available entries in the FIFO queue. Because of this latency;, it is recommended to use
the ALMOST_FULL signal to stop further writing. When the FIFO is full, the write pointer
will be frozen. The Full flag is deasserted three write clock cycles after any read operation.

Write Error Flag

Once the Full flag has been asserted, any further write attempts will not increment the
write address pointer but will trigger the Write Error flag. The Write Error flag is
deasserted when Write Enable or Full is deasserted Low. This signal is synchronous to
WRCLK.

ALMOSTFULL Flag

The ALMOSTFULL flag is set when the FIFO has the number of available empty spaces
specified by the ALMOST_FULL_OFFSET value or fewer. The ALMOSTFULL flag warns
the user to stop writing. It deasserts when the number of empty spaces in the FIFO is
greater than the ALMOST_FULL_OFFSET value, and is synchronous to WRCLK.

Table 4-11 shows the number of clock cycles to assert or deassert each flag.

Table 4-11: Clock Cycle Latency for Flag Assertion and Deassertion

Assertion Deassertion
Clock Cycle Latency
Standard FWFT Standard FWFT
EMPTY 0 0 3 4
FULL 1 1 3 3
ALMOST EMPTY®) 1 1 3 3
ALMOST FULL(® 1 1 3 3
READ ERROR 0 0 0 0
WRITE ERROR 0 0 0 0

Notes:

1. Depending on the time between read and write clock edges, the ALMOSTEMPTY and ALMOSTFULL
flags can deassert one cycle later.

152

www.Xxilinx.com Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

2:)(||_|NX® FIFO Attributes

FIFO Attributes

Table 4-12 lists the FIFO16 attributes. The size of the asynchronous FIFO can be configured
by setting the DATA_WIDTH attribute. The “FIFO VHDL and Verilog Templates” section
has examples for setting the attributes.

Table 4-12: FIFO16 Attributes

Attribute Name Type Values Default Notes
ALMOST_FULL_OFFSET 12-bit See Table 4-13 Setting determines ALMOST_FULL
HEX condition. Must be set using
hexadecimal notation.
ALMOST_EMPTY_OFFSET 12-bit See Table 4-13 Setting determine ALMOST_EMPTY
HEX condition. Must be set using
hexadecimal notation.
FIRST_WORD_FALL_THROUGH Boolean | FALSE, FALSE | If TRUE, during a write of the 1st word
TRUE the word appears at the FIFO output
without RDEN asserted.
DATA_WIDTH Integer | 4,9,18,36 36
LOC String Valid FIFO16 Sets the location of the FIFO16.
location
Notes:
1. If FIFO16 is constrained to FIFO16_X#Y#, then RAMB16 can not be constrained to RAMB16_X#Y# since the same location would be
used.

FIFO ALMOSTEMPTY / ALMOSTFULL Flag Offset Range
The offset ranges for ALMOSTEMPTY and ALMOSTFULL are listed in Table 4-13.

Table 4-13: FIFO ALMOSTFULL / EMPTY Flag Offset Range

ALMOST_EMPTY_OFFSET
Configuration ALMOST_FULL_OFFSET
Standard FWFT
4k x 4 5 to 4092 6 to 4093 4 to 4091
2k x9 5 to 2044 6 to 2045 4 to0 2043
1k x 18 5 to 1020 6 to 1021 4t0 1019
512 x 36 5 to 508 6 to 509 4 to 507
Notes:
1. ALMOST_EMPTY_OFFSET and ALMOST_FULL_OFFSET for any design must be less than the FIFO
depth.

The ALMOSTFULL and ALMOSTEMPTY offsets are usually set to a small value of less
than 10 to provide a warning that the FIFO is about to reach its limits. Since the full
capacity of any FIFO is normally not critical, most applications use the ALMOST_FULL
flag not only as a warning but also as a signal to stop writing.

Similarly, the ALMOST_EMPTY flag can be used to stop reading. However, this would
make it impossible to read the very last entries remaining in the FIFO. The user can ignore
the ALMOSTEMPTY signal and continue to read until EMPTY is asserted.

Virtex-4 FPGA User Guide www.Xxilinx.com 153
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 4: Block RAM

SIXILINX®

FIFO VHDL and Verilog Templates

The ALMOSTFULL and ALMOSTEMPTY offsets can also be used in unstoppable block
transfer applications to signal that a new block of data can be written or read.

When setting the offset ranges in the design tools, use hexadecimal notation.

VHDL and Verilog templates are available in the Libraries Guide. Also see section “FIFO16

Error Condition and Work-Arounds,” page 165.

FIFO VHDL Template

FIFOl6 : To incorporate this function into the design, the

VHDL : following instance declaration needs to be placed in
instance : the architecture body of the design code. The instance
declaration : name (FIFOl6_inst) and/or the port declarations

code : after the "=>" assignment can be changed to properly

connect this function to the design. All inputs and
outputs must be connected.

Library : In addition to adding the instance declaration, a use
declaration : statement for the UNISIM.v components library needs
for : to be added before the entity declaration. This
Xilinx : library contains the component declarations for all
primitives : Xilinx primitives and points to the models that will

be used for simulation.

Copy the following two statements and paste them before the
Entity declaration, unless they already exists.

Library UNISIM;
use UNISIM.vcomponents.all;

<--Cut code below this line and paste into the architecture body-->

-- FIFOl6: Virtex-4 Block RAM Asynchronous FIFO
-- Virtex-4 FPGA User Guide

FIFOl6_inst : FIFOl6
generic map (

ALMOST_FULL_OFFSET => X"000", -- Sets almost full threshold
ALMOST_EMPTY_OFFSET => X"000", -- Sets the almost empty threshold
DATA_WIDTH => 36, -- Sets data width to 4, 9, 18, or 36
FIRST_WORD_FALL_THROUGH => FALSE) -- Sets the FIFO FWFT to TRUE or FALSE
port map (
ALMOSTEMPTY => ALMOSTEMPTY, -- 1l-bit almost empty output flag
ALMOSTFULL => ALMOSTFULL, -- 1-bit almost full output flag
DO => DO, -- 32-bit data output
DOP => DOP, -- 4-bit parity data output
EMPTY => EMPTY, -- 1-bit empty output flag
FULL => FULL, -- 1-bit full output flag
RDCOUNT => RDCOUNT, -- 12-bit read count output
RDERR => RDERR, -- 1-bit read error output
WRCOUNT => WRCOUNT, -- 12-bit write count output
WRERR => WRERR, -- 1-bit write error
DI => DI, -- 32-bit data input
DIP => DIP, -- 4-bit partity input
154 www.xilinx.com Virtex-4 FPGA User Guide

UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

2:)(||_|NX® FIFO VHDL and Verilog Templates

RDCLK => RDCLK, -- 1-bit read clock input
RDEN => RDEN, -- 1-bit read enable input
RST => RST, -- 1-bit reset input

WRCLK => WRCLK, -- 1-bit write clock input
WREN => WREN -- 1-bit write enable input

)

-- End of FIFOl6_inst instantiation

FIFO Verilog Template

// FIFOl6 : To incorporate this function into the design, the
// Verilog : following instance declaration needs to be placed in
// instance : the body of the design code. The instance name

// declaration : (FIFOl6_1kx18_inst) and/or the port declarations

// code : within the parenthesis can be changed to properly
// : reference and connect this function to the design.
// : All inputs and outputs must be connected.

/] <-==== Cut code below this line---->

// FIFOl6: Virtex-4 Block RAM Asynchronous FIFO configured for 1k deep x
// 18 wide
// Virtex-4 FPGA User Guide

FIFO16 # (
.ALMOST_FULL_OFFSET (12'h000), // Sets almost full threshold
.ALMOST_EMPTY_OFFSET (12'h000), // Sets the almost empty
threshold
.DATA_WIDTH(36), // Sets data width to 4, 9, 18,
or 36

.FIRST_WORD_FALL_THROUGH ("FALSE") // Sets the FIFO FWFT to "TRUE"
or "FALSE"
) FIFOl6_inst (
.ALMOSTEMPTY (ALMOSTEMPTY), // 1l-bit almost empty output flag

.ALMOSTFULL (ALMOSTFULL) , // 1-bit almost full output flag
.DO (DO) , // 32-bit data output

.DOP (DOP) , // 4-bit parity data output
.EMPTY (EMPTY) , // 1-bit empty output flag
.FULL (FULL) , // 1-bit full output flag
.RDCOUNT (RDCOUNT) , // 12-bit read count output
.RDERR (RDERR) , // 1l-bit read error output
.WRCOUNT (WRCOUNT) , // 12-bit write count output
.WRERR (WRERR) , // 1l-bit write error
.DI(DI), // 32-bit data input
.DIP(DIP), // 4-bit partity input
.RDCLK (RDCLK) , // 1-bit read clock input
.RDEN (RDEN) , // 1l-bit read enable input
.RST(RST) , // 1-bit reset input

.WRCLK (WRCLK) , // 1-bit write clock input
.WREN (WREN) // 1-bit write enable input

)

// End of FIFOl6_1kx18_inst instantiation

Virtex-4 FPGA User Guide www.Xxilinx.com 155
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 4: Block RAM

SIXILINX®

FIFO Timing Models and Parameters
Table 4-14 shows the FIFO parameters.

Table 4-14: FIFO Timing Parameters

Parameter

Function

Control
Signal

Description

Setup and Hold Relative to Clock (CLK)

Texck = Setup time (before clock edge)
Trcxx = Hold time (after clock edge)

The following descriptions are for setup times only.

Trpck_pr/ Data inputs DI Time before WRCLK that data must be stable at the
Trckp p1® DI inputs of the FIFO.
Trcex RDEN/ Read enable RDEN Time before RDCLK that Read Enable must be stable
TFCKC_RDEN(at the RDEN inputs Of the FIFO.
Trcex WrReN/ Write enable WREN Time before WRCLK that write enable must be
Trcxkc WREN stable at the WREN inputs of the FIFO.
Sequential Delays
TFCKO_DO(D Clock to data output DO Time after RDCLK that the output data is stable at
the DO outputs of the FIFO.
Trcko aempTy® | Clockto ALMOSTEMPTY | AEMPTY | Time after RDCLK that the ALMOSTEMPTY signal
output is stable at the ALMOSTEMPTY outputs of the FIFO.
Trcko aruLL® Clock to ALMOSTFULL AFULL | Time after WRCLK that the ALMOSTFULL signal is
output stable at the ALMOSTFULL outputs of the FIFO.
Trcko _empTy'? Clock to EMPTY output EMPTY Time after RDCLK that the Empty signal is stable at
the EMPTY outputs of the FIFO.
TFCKO_FULL(Z) Clock to FULL output FULL Time after WRCLK that the FULL signal is stable at
the FULL outputs of the FIFO.
TFCKO?RDERR(Z) Clock to read error output RDERR Time after RDCLK that the Read Error signal is
stable at the RDERR outputs of the FIFO.
TFCKO?WRERR(Z) Clock to write error WRERR Time after WRCLK that the Write Error signal is
output stable at the WRERR outputs of the FIFO.
TFCKO?RDCOUNT(S') Clock to read pointer RDCOUNT | Time after RDCLK that the Read pointer signal is
output stable at the RDCOUNT outputs of the FIFO.
TFCKO?WRCOUNT(S) Clock to write pointer WRCOUNT | Time after WRCLK that the Write pointer signal is
output stable at the WRCOUNT outputs of the FIFO.
Reset to Out
Trco AEMPTY Reset to ALMOSTEMPTY AEMPTY Time after reset that the ALMOSTEMPTY signal is
output stable at the ALMOSTEMPTY outputs of the FIFO.
Trco ArULL Reset to ALMOSTFULL AFULL Time after reset that the ALMOSTFULL signal is
output stable at the ALMOSTFULL outputs of the FIFO.
Trco EMPTY Reset to EMPTY output EMPTY Time after reset that the Empty signal is stable at the
EMPTY outputs of the FIFO.
156 www.xilinx.com Virtex-4 FPGA User Guide

UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

SOXILINX®

FIFO Timing Models and Parameters

Table 4-14: FIFO Timing Parameters (Continued)

Parameter Function C(_antrol Description
Signal
Trco FULL Reset to FULL output FULL Time after reset that the FULL signal is stable at the
FULL outputs of the FIFO.
Trco RDERR Reset to read error output RDERR Time after reset that the Read error signal is stable at
the RDERR outputs of the FIFO.
Trco WRERR Reset to write error WRERR Time after reset that the Write error signal is stable at
output the WRERR outputs of the FIFO.
Trco RDCOUNT Reset to read pointer RDCOUNT | Time after reset that the Read pointer signal is stable
output at the RDCOUNT outputs of the FIFO.
TrcO WRCOUNT Reset to write pointer WRCOUNT | Time after reset that the Write pointer signal is stable
output at the WRCOUNT outputs of the FIFO.

Notes:

1. Tgcko_po includes parity output (Trcxko pop)-
2. Inthe Virtex-4 Data Sheet, Tecxo_aempty Trcko_arurt, Trcko_empTy Trcko_rurls Tecko RDERR- TFCkO_WRERR are combined into

Trcko_FLAGS:

3. In the Virtex-4 Data Shé’@t, TFCKO_RDCOUNT and TFCKO_WRCOUNT are combined into TFCKO_POINTERS'

L

TFCDCK_DI includes parity inputs (TFCDCK_DIP)‘

5. In the Virtex-4 Data Sheet, WRITE and READ enables are combined into Trcck gN-

FIFO Timing Characteristics

The various timing parameters in the FIFO are described in this section. There is also
additional data on FIFO functionality. The timing diagrams describe the behavior in these

five cases.

e “Case 1: Writing to an Empty FIFO”
e “Case 2: Writing to a Full or Almost Full FIFO”

e “Case 3: Reading From a Full FIFO”

e “Case 4: Reading From an Empty or Almost Empty FIFO”
e “Case 5: Resetting All Flags”

Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

www.Xxilinx.com

157

http://www.xilinx.com
http://www.xilinx.com/bvdocs/publications/ds302.pdf
http://www.xilinx.com/bvdocs/publications/ds302.pdf
http://www.xilinx.com/bvdocs/publications/ds302.pdf

Chapter 4: Block RAM & XILINX®

Case 1: Writing to an Empty FIFO

Prior to the operations performed in Figure 4-17, the FIFO is completely empty.

1 2 3 4
| | |
wreek [1 LT LI LI 7L L7 L[
—| =— TFcCcK WREN [|
WREN I | [|
—> l=— Tepck pI — = Tepck i !
DI X 00 X 01 X 02 X 03 X 04 X 05 X 06
| [|
ook _ [L L L L L L
| [|
RDEN | | |1 |
| —— f— TFCKO?DO |
DO ! L Xoo !
i —1 = TFCKO_EMPTY |
EMPTY | P |
' I I Tecko AEMPTY —> l—
AEMPTY : L .

ug070_4_17_071204

Figure 4-17: Writing to an Empty FIFO in FWFT Mode

Clock Event 1 and Clock Event 3: Write Operation and Deassertion of EMPTY
Signal

During a write operation to an empty FIFO, the content of the FIFO at the first address is
replaced by the data value on the DI pins. Three read-clock cycles later (four read-clock
cycles for FWFT mode), the EMPTY pin is deasserted when the FIFO is no longer empty.

For the example in Figure 4-17, the timing diagram is drawn to reflect FWFT mode. Clock
event 1 is with respect to the write-clock, while clock event 3 is with respect to the read-
clock. Clock event 3 appears four read-clock cycles after clock event 1.

e Attime Tppck py before clock event 1 (WRCLK), data 00 becomes valid at the DI
inputs of the FIFO.

e Attime Tpccx wren, before clock event 1 (WRCLK), write enable becomes valid at
the WREN input of the FIFO.

e Attime Tpcxo po, after clock event 3 (RDCLK), data 00 becomes valid at the DO
output pins of the FIFO. In the case of standard mode, data 00 does not appear at the
DO output pins of the FIFO.

e Attime Tpcxo pmpry after clock event 3 (RDCLK), EMPTY is deasserted. In the case
of standard mode, EMPTY is deasserted one read-clock earlier than clock event 3.

If the rising WRCLK edge is close to the rising RDCLK edge, EMPTY could be deasserted
one RDCLK period later.

Clock Event 2 and Clock Event 4: Write Operation and Deassertion of
ALMOSTEMPTY Signal

Three read-clock cycles after the fourth data is written into the FIFO, the ALMOSTEMPTY
pin is deasserted to signify that the FIFO is not in the ALMOSTEMPTY state.

158 www.Xxilinx.com Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

2:)(||_|NX® FIFO Timing Models and Parameters

For the example in Figure 4-17, the timing diagram is drawn to reflect FWFT mode. Clock
event 2 is with respect to write-clock, while clock event 4 is with respect to read-clock.
Clock event 4 appears three read-clock cycles after clock event 2.

e Attime Tppck pr before clock event 2 (WRCLK), data 03 becomes valid at the DI
inputs of the FIFO.
e Write enable remains asserted at the WREN input of the FIFO.

e Atclock event 4, DO output pins of the FIFO remains at 00 since no read has been
performed. In the case of standard mode, data 00 will never appear at the DO output
pins of the FIFO.

e Attime Trcxo apmpry after clock event 4 (RDCLK), ALMOSTEMPTY is deasserted
at the AEMPTY pin. In the case of standard mode, AEMPTY deasserts in the same
way as in FWFT mode.

If the rising WRCLK edge is close to the rising RDCLK edge, AEMPTY could be deasserted
one RDCLK period later.

Case 2: Writing to a Full or Almost Full FIFO

Prior to the operations performed in Figure 4-18, the FIFO is almost completely full. In this
example, the timing diagram reflects of both standard and FWFT modes.

1 2 3 4
| | | | |
WRCLK L 1 I =1 1 L] °L
— *— TFCCK_WREN | TFCCK_WREN —*1 |=—
WREN [1 : [[|
—] !H TEDCK_DI TEDCK_DI —™1 !« —~| l«— Trpck pi
DI X 00 X 01 X 02 X 03 X 04 X 05 X 06
| | | | |
oo [LU LI L L L L Ll
| | | | |
RDEN | | | | |
| | Treko_FULL — =— |
o L it
i i i : .
AFULL | L | TFCKO_WERR —™1 =
[[Trcko WERR —™ |=—
WRERR ! — l=— Troko_FuLL I N

ug070_4_18_071204

Figure 4-18: Writing to a Full / Almost Full FIFO

Clock Event 1: Write Operation and Assertion of ALMOSTFULL Signal
During a write operation to an almost full FIFO, the ALMOSTFULL signal is asserted.

e Attime Tppck py, before clock event 1 (WRCLK), data 00 becomes valid at the DI
inputs of the FIFO.

e Attime Tpccx wren, before clock event 1 (WRCLK), write enable becomes valid at
the WREN input of the FIFO.

e Attime Tpcxo aruLL, One clock cycle after clock event 1 (WRCLK), ALMOSTFULL is
asserted at the AFULL output pin of the FIFO.

Virtex-4 FPGA User Guide www.Xxilinx.com 159
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 4: Block RAM & XILINX®

Clock Event 2: Write Operation, and Assertion of FULL Signal
The FULL signal pin is asserted when the FIFO is full.

e Attime Tppck py before clock event 2 (WRCLK), data 04 becomes valid at the DI
inputs of the FIFO.

e Write enable remains asserted at the WREN input of the FIFO.

e Attime Tpcko purr, one clock cycle after clock event 2 (WRCLK), FULL is asserted at
the FULL output pin of the FIFO.

If the FIFO is full and a read followed by a write is performed, the FULL signal remains
asserted.
Clock Event 3: Write Operation and Assertion of Write Error Signal

The write error signal pin is asserted when data going into the FIFO is not written because
the FIFO is in a FULL state.

e Attime Tppck py, before clock event 3 (WRCLK), data 05 becomes valid at the DI
inputs of the FIFO.

e Write enable remains asserted at the WREN input of the FIFO.

e Attime Tpcxo wreRrrs after clock event 3 (WRCLK), a write error is asserted at the
WRERR output pin of the FIFO. Data 05 is not written into the FIFO.

Clock Event 4: Write Operation and Deassertion of Write Error Signal
WRERR) is deasserted when a user stops trying to write into a full FIFO.

e Attime Tpccx wrens before clock event 4 (WRCLK), write enable is deasserted at the
WREN input of the FIFO.

e Attime Tpcxko WRERR after clock event 4 (WRCLK), write error is deasserted at the
WRERR output pin of the FIFO.

The write error signal is asserted / deasserted at every write-clock positive edge. As long as
both the write enable and FULL signals are true, write error will remain asserted.

Case 3: Reading From a Full FIFO

Prior to the operations performed in Figure 4-19, the FIFO is completely full.

1 23 4
| [|
wrok L L L L L]
| (| |
WREN | |1 |
| (| |
RDCLK [I 7 7 7 7 LI
—| =— TFCCK_RDEN L :
RDEN _| I |
— |=— TFcko_DO —*> =— TFcko_bo |
DO X 00 X 01 X 102 X 03 X 04 X 105 X 06
I >~ Trcko_FuLL !
- —] T
FULL ; ; | ! =—TFrcKko_AFULL
| L1 |
AFULL I Il I
ug070_4_19_071204
Figure 4-19: Reading From a Full FIFO
160 www.xilinx.com Virtex-4 FPGA User Guide

UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

SOXILINX®

FIFO Timing Models and Parameters

Clock Event 1 and Clock Event 2: Read Operation and Deassertion of Full Signal

During a read operation on a full FIFO, the content of the FIFO at the first address is
asserted at the DO output pins of the FIFO. Three write-clock cycles later, the FULL pin is
deasserted when the FIFO is no longer full.

The example in Figure 4-19 reflects both standard and FWFT modes. Clock event 1 is with
respect to read-clock, while clock event 2 is with respect to write-clock. Clock event 2
appears three write-clock cycles after clock event 1.

e Attime Tpccg rpen, before clock event 1 (RDCLK), read enable becomes valid at the
RDEN input of the FIFO.

e Attime Tpcko po, after clock event 1 (RDCLK), data 00 becomes valid at the DO
inputs of the FIFO.

e Attime Tpcko purp after clock event 2 (WRCLK), FULL is deasserted.

If the rising RDCLK edge is close to the rising WRCLK edge, AFULL could be deasserted
one WRCLK period later.

Clock Event 3 and Clock Event 4: Read Operation and Deassertion of
ALMOSTFULL Signal

Three write-clock cycles after the fourth data is read from the FIFO, the ALMOSTFULL pin
is deasserted to signify that the FIFO is not in the ALMOSTFULL state.

The example in Figure 4-19 reflects both standard and FWFT modes. Clock event 3 is with
respect to read-clock, while clock event 4 is with respect to write-clock. Clock event 4
appears three write-clock cycles after clock event 3.

e Read enable remains asserted at the RDEN input of the FIFO.

e Attime Trcxo po, after clock event 3 (RDCLK), data 03 becomes valid at the DO
outputs of the FIFO.

e Attime Tpcxo aruLL after clock event 4 (RDCLK), ALMOSTFULL is deasserted at
the AFULL pin.

There is minimum time between a rising read-clock and write-clock edge to guarantee that
AFULL will be deasserted. If this minimum is not met, the deassertion of AFULL can take
an additional write clock cycle.

Virtex-4 FPGA User Guide www.Xxilinx.com 161
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 4: Block RAM & XILINX®

Case 4: Reading From an Empty or Almost Empty FIFO

Prior to the operations performed in Figure 4-20, the FIFO is almost completely empty. In
this example, the timing diagram reflects standard mode. For FWFT mode, data at DO
appears one read-clock cycle earlier.

1 2 3 4
Wlon o B D e D e D e T e O e B
| | | |
WREN | | | |
| | | |
rock | L LI LT 1| L[L[1T
—>1 =~ TrFcck RDEN ! . —! *— TFcCcK_RDEN
RDEN _| | | |
— =—Tgcko_po Trcko po—™ l=— | [
DO X 00 X o1 X 02 X 03 X o4 '
| | | |
| TFCKO_EMPTY — > |=— | ;
EMPTY ! | | |
[—{ [=— TEcKO AEMPTY | | |
AEMPTY I [[|
: TFCKOJZIKDERR 4>: e |

. TFCKO_RDERR
ug070_4_20_071204

Figure 4-20: Reading From an Empty / Almost Empty FIFO (Standard Mode)

Clock Event 1: Read Operation and Assertion of ALMOSTEMPTY Signal
During a read operation to an almost empty FIFO, the ALMOSTEMPTY signal is asserted.

e Attime Tpcck rpens before clock event 1 (RDCLK), read enable becomes valid at the
RDEN input of the FIFO.

e Attime Trcxo po, after clock event 1 (RDCLK), data 00 becomes valid at the DO
outputs of the FIFO.

e Attime Tpcxko apmpTY One clock cycle after clock event 1 (RDCLK), ALMOSTEMPTY
is asserted at the AEMPTY output pin of the FIFO.

Clock Event 2: Read Operation and Assertion of EMPTY Signal

The EMPTY signal pin is asserted when the FIFO is empty.

e Read enable remains asserted at the RDEN input of the FIFO.

e Attime Tpcko po, after clock event 2 (RDCLK), data 04 (last data) becomes valid at
the DO outputs of the FIFO.

e Attime Tpcxo pmpry after clock event 2 (RDCLK), Empty is asserted at the EMPTY
output pin of the FIFO.

In the event that the FIFO is empty and a write followed by a read is performed, the
EMPTY signal remains asserted.

Clock Event 3: Read Operation and Assertion of Read Error Signal

The read error signal pin is asserted when there is no data to be read because the FIFO is in
an EMPTY state.

e Read enable remains asserted at the RDEN input of the FIFO.

162 www.Xxilinx.com Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

SOXILINX®

FIFO Timing Models and Parameters

e Attime Tpcxo rDERR after clock event 3 (RDCLK)), read error is asserted at the
RDERR output pin of the FIFO.

e Data 04 remains unchanged at the DO outputs of the FIFO.

Clock Event 4: Read Operation and Deassertion of Read Error Signal

The read error signal pin is deasserted when a user stops trying to read from an empty
FIFO.

e Attime Tpcck rpen, before clock event 4 (RDCLK), read enable is deasserted at the
RDEN input of the FIFO.

e Attime Tpcxo rDERR, after clock event 4 (RDCLK), read error is deasserted at the
RDERR output pin of the FIFO.

The read error signal is asserted /deasserted at every read-clock positive edge. As long as
both RDEN and EMPTY are true, RDERR will remain asserted.

Case 5: Resetting All Flags

RST 1 L
wreek 0 L LT LTI LT I 1
RDCLK [1 I -4 I LI L

—| I=— Trco EmPTY

Empry ____ Y

—| |=— Trco_AEMPTY

AEMPTY ___ Y

— I=— Trco_rFuLL
FULL >\

—| I=— Trco_aFuLL

AFULL PN

ug070_4_21_071204

Figure 4-21: Resetting All Flags

When the reset signal is asserted, all flags are reset.

e Attime Tpco pmpry after reset (RST), EMPTY is asserted at the EMPTY output pin of
the FIFO.

o Attime Tpco aApMmpTY after reset (RST), ALMOSTEMPTY is asserted at the AEMPTY
output pin of the FIFO.

e Attime Tpco pyury after reset (RST), full is deasserted at the FULL output pin of the
FIFO.

e Attime Tpco apurL after reset (RST), ALMOSTFULL is deasserted at the AFULL
output pin of the FIFO.

Reset is an asynchronous signal used to reset all flags. Hold the reset signal High for three
read and write clock cycles to ensure that all internal states and flags are reset to the correct
value.

Virtex-4 FPGA User Guide www.Xxilinx.com 163
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 4: Block RAM ST XILNX®

FIFO Applications

There are various uses for the Virtex-4 FPGA block RAM FIFO:

e Cascading two asynchronous FIFOs to form a deeper FIFO

e Building wider asynchronous FIFO by connecting two FIFOs in parallel.

Cascading FIFOs to Increase Depth

Figure 4-22 shows a way of cascading FIFOs to increase depth. The application sets the first
FIFO in FWFT mode, and uses external resources to connect to the second FIFO. The
ALMOST_FULL_OFFSET of the second FIFO should be four or more. The data latency of
this application can be up to double that of a single FIFO, and the maximum frequency is
limited by the feedback path. The NOR gate is implemented using CLB logic.

i |
I I
|
DIN[3:0] : DIN[3:0] DOUT[3:0] DIN[3:0] DOUT(3:0] {—= DOUTI[3:0]
|
| WREN
WREN _ WREN EMPTY AFULL |
| TlWRoik i) |
WRCLK ——»| WRCLK WRCLK I
| r’ FIFO #1 RDCLK FiFQ #2 I
RDCLK — '
RDEN 8K x4 FIFO |

UG070_4_23_030708

Figure 4-22: Cascading FIFO

Cascading FIFOs to Increase Width

As shown in Figure 4-23, the Virtex-4 FPGA FIFO can be cascaded to add width to the
design. CLB logic is used to implement the AND/OR gates. The maximum frequency can
be limited by the logic gate feedback path.

512 x 72 FIFO

DIN[35:0] , DIN[35:0] DOUTI[35:0]
: L WREN
RDEN RDEN
WRCLK | o~ WRCLK EMPTY iD_o—,—>
RDCLK
I o—| RDCLK FIFO #{1 AFULL |—

[
[[
| | DOUT[71:36]
. | | :
DIN71:36] DIN[35:0] DOUT[35:0] :
le_—\ WREN [
') RDEN '
' EMPTY '
| WRCLK | AFULL
| .
| RDCLK ElFQ #2 AFULL |
[[
| <] |
tL—t— - - - - - - — ————————— = — = — = — = 4 UGO070_4_24_030708
Figure 4-23: Cascading FIFO by Width
164 www.Xxilinx.com Virtex-4 FPGA User Guide

UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

SOXILINX®

FIFO16 Error Condition and Work-Arounds

FIFO16 Error Condition and Work-Arounds

The FIFO16 flags (ALMOSTFULL, FULL, ALMOSTEMPTY, EMPTY), after a very specific
sequence of events, transition into a state in which they operate incorrectly. Erroneous
settings of the FULL and EMPTY flags can jeopardize even basic FIFO functionality. This
section details the error condition and describes synchronous and asynchronous clock
work-arounds available to ensure robust operation under all operating conditions. Three
different solutions are described in this section. The solution summary section lists the
criteria to be used while choosing a particular solution.

FIFO16 Error Condition

The basic Virtex-4 FPGA FIFO16 ceases to correctly generate the ALMOSTEMPTY and
EMPTY flags, after the following sequence occurs:

1. A sequence of read and/or write operations makes the number of words in the FIFO
equal to the ALMOST_EMPTY_OFFSET threshold (either coming from a higher level
as a result of a read operation, or from a lower level as a result of a write operation).
This is then followed by either a write or a read operation.

2. If (and only if) the operation immediately following this particular read or write
operation is a simultaneous read /write operation, where the enabled read and write
active clock edges are coincident or very close (<500 ps) together, the ALMOSTEMPTY
flag is incorrect. Since ALMOSTEMPTY is a condition for decoding EMPTY, the
EMPTY flag is also wrong.

A similar sequence of operations around the ALMOST_FULL_OFFSET ceases to generate
correct ALMOSTFULL and FULL flags.

Solution 1: Synchronous/Asynchronous Clock Work-Arounds

Synchronous Clock Work-Around

In a synchronous design, simultaneous operation can be avoided by offsetting the read and
write clocks by about 1 ns. This is easily achieved by using opposite clock edges for the
read and write clocks. In most applications, this requires data resynchronization registers
to bring read and write back together in the same clock domain. Figure 4-24 illustrates the
concept.

This resynchronization must be done on the input side so that the critical EMPTY flag
avoids any latency. The FULL flag is eliminated, as it would not be useful with its 2-clock
latency; ALMOSTFULL should be used instead. The connections between the input
registers and the FIFO16 must be tightly constrained, as this part of the circuit effectively
runs at twice the clock rate.

DI/DIP wdat rdat —— DO/DOP
WREN wren rden [=—— RDEN
CLK — ,—> rdclk f«—— CLK
wrclk
CLKbar
full empty |— EMPTY
ALMOSTFULL afull aempty [— ALMOSTEMPTY
WRERR wrerr rderr — RDERR
<«— CLK FIFO16
UGO070_c4_25_020307

Figure 4-24: Synchronous Clock Work-Around

Virtex-4 FPGA User Guide

www.Xxilinx.com 165

UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 4: Block RAM & XILINX®

Asynchronous Clock Work-Around

In an asynchronous design, it is inevitable that the two clocks occasionally come very close
(<500 ps) to each other, which might cause the problem described above, and no clock
delay manipulation can then avoid this problem. For this case, Xilinx has developed a
solution that uses additional circuitry to ensure that the FIFO16 never gets into the erred
state. This solution operates in a similar manner to the basic FIFO16, and works under all
conditions and clock frequencies.

The composite FIFO adds a small LUTFIFO, acting as an asynchronous buffer, that allows
the FIFO16 to always operate in synchronous mode. It is necessary to connect the faster
clock to the FIFO16 port so that the smaller LUTFIFO never becomes a bottleneck. This
constraint leads to two separate designs, as shown in Figure 4-25 and Figure 4-26.

In a case where it is unknown which clock is faster, the “WRCLK faster than RDCLK”
design should be used. This design works for any clock frequency combination, including
WRCLK faster than RDCLK, WRCLK identical to and /or phase-shifted with respect to
RDCLK, and even if the WRCLK and RDCLK relationship is unknown. When this design
is used, and RDCLK is faster than WRCLK in the system, it is possible for the EMPTY flag
to assert before the ALMOSTEMPTY flag asserts (note that if the two clocks are nominally
the same, this does not occur). This is because the intra-FIFO control logic is running off of
WRCLK which is designated as the faster clock, but is really the slower clock in the system.
This does not cause data corruption or incorrect FIFO behavior in any other manner. If this
situation exists and this behavior is not acceptable, the CORE Generator tool FIFO
Generator Block RAM work-around described below is recommended.

Some additional logic controls the transfer of data between the two FIFOs for both designs.
Resynchronization of specific signals and handshaking between the two FIFOs results in a
small uncertainty of the composite FIFO depth and of the ALMOST_FULL_OFFSET and
ALMOST_EMPTY_OFFSET. Refer to Table 4-15 for details.

WRCLK Faster than RDCLK Design

In this case (shown in Figure 4-25), the FIFO WRCLK is connected to WRCLKFIFO16.
RDCLKFIFO16 and WRCLKLUTFIFO are driven from WRCLKbar, which is a 180-degree
phase-shifted version of WRCLK. The FIFO RDCLK is connected to RDCLKLUTFIFO.
FIFO16 forms the write interface of the composite FIFO; its read side is clocked by the
inverted write clock, which is also used to write into the small LUTFIFO.

DI/DIP —| wdat rdat wdat rdat [— DO/DOP

WREN —| wren rden [«——- ~—— afull rden [+~—— RDEN
WRCLK —| wrclk rdclk [+—— RDCLK

ALMOSTFULL --— afull empty [— —| wren
FULL ——full aempty
WRERR ~— wrerr rdlclk [~—RCLKbar wrck empty —= EMPTY
rderr —— RDERR
FIFO16 LUTFIFO

Optional FWFT

ALMOSTEMPTY
RDCLK
UG070_c4_26_020307
Figure 4-25: WRCLK Faster than RDCLK Design
166 www.xilinx.com Virtex-4 FPGA User Guide

UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

SOXILINX®

FIFO16 Error Condition and Work-Arounds

RDCLK Faster than WRCLK Design

In this case (shown in Figure 4-26), the WRCLK of the FIFO is connected to

WRCLKLUTFIFO. The RDCLKLUTFIFO and WRCLKFIFO16 are driven from RDCLKbar,
which is a 180-degree phase-shifted version of RDCLK. The RDCLK of the FIFO is
connected to RDCLKFIFO16. The LUTFIFO forms the write interface of the composite
FIFO; its read side is clocked by the inverted read clock, which is also used to write into the
FIFO16. LUTFIFO flags are combined and synchronized to the write clock to generate the

ALMOSTFULL flag.

DI/DIP —| wdat rdat >| wdat rdat — DO/DOP
WREN — rden |=—— ~— afull rden f=—— RDEN
WRCLK — wrclk rdclk [«—— RDCLK

empty [— — ™| wren ALMOST
aempty [—
FULL —— full EMPTY
RDCLKbar
WRERR —=+— overflow rdclk [« > wrclk empty |— EMPTY
rderr —— RDERR
LUTFIFO FIFO16
Optional FWFT
ALMOST »
FULL WRCLK

UG070_c4_27_031208

Figure 4-26: RDCLK Faster than WRCLK Design

User-Programmable Flag Settings in the Composite FIFO

The offset ranges for user-programmable ALMOSTEMPTY and ALMOSTFULL flags
along with the FIFO capacity are listed in Table 4-15. Since the full capacity of any FIFO is
normally not critical, most applications use the ALMOSTFULL flag not only as a warning
but also as a signal to stop writing. The ALMOSTEMPTY flag can be used as a warning
that the FIFO is approaching EMPTY, but to ensure that the very last entries in the FIFO are
read out, reading should be continued until EMPTY is asserted.

When setting the offset ranges in the provided Perl script (refer to Design Files below), use
decimal notation.

Table 4-15: FIFO Capacity and Effective ALMOSTFULL/ALMOSTEMPTY Flag Offsets

FIFO Type Standard/FWFT

FIFO Depth FIFO16(1) + 15

Clock Style WRCLK>RDCLK RDCLK>WRCLK
ALMOST_FULL_OFFSET AFpro6? + 15 15
ALMOST_EMPTY_OFFSET AEpro1® + 15 AEpro16®

Notes:

1. FIFO16 = Capacity of FIFO16. Refer to Table 4-9, “FIFO Capacity.”

2. AFgro16 = Set by user in Perl script. Sets the FIFO16 ALMOST_FULL_OFFSET. Refer to Table 4-13.
3. AEpp0o14 = Set by user in Perl script. Sets the FIFO16 ALMOST_EMPTY_OFFSET. Refer to Table 4-13.

All values can vary by up to 3 words, depending on the read /write clock rates and the
read/write patterns.

Virtex-4 FPGA User Guide

www.Xxilinx.com 167

UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 4: Block RAM

SIXILINX®

Status Flags

Although the functionality of the status flags on the composite FIFO remain the same, the
assertion/deassertion latencies for some of the signals have increased. The assertion
values for key signals have remained the same as on the FIFO16 (EMPTY, FULL,
ALMOSTEMPTY, ALMOSTFULL, RDERR, and WRERR). Table 4-16 lists the latency
values for the status flags. Also note that the values have an uncertainty that is affected by
the frequency ratios of the read /write clock, as well as the read /write patterns.

Table 4-16: Clock Cycle Latency for Status Flag Assertion and Deassertion

FIFO Type Standard/FWFT
Clock Style WRCLK >RDCLK RDCLK>WRCLK
Clock Cycle Latency Assertion Deassertion Assertion Deassertion

EMPTY 0 10/120 0 10/11
FULL 1 9 0 9
ALMOSTEMPTY 10 4 1 10
ALMOSTFULL 1 9 11 5
RDERR 0 0 0 0
WRERR 0 0 0 0
Notes:

1. Latency values in bold vary with the ratio between the read /write clock frequencies and read /write
pattern. In certain conditions for WRCLK > RDCLK, the ALMOSTEMPTY flag deasserts before the
EMPTY flag. This behavior is reflected in simulations, and increasing the ALMOST_EMPTY_OFFSET
rectifies the behavior.

Resource Utilization

The design was implemented using the ISE 8.1i software with default settings for MAP,
Place, and Route. The approximate LUT count for a x4 design varies from 55 to 70 LUTs.
For a x9 design, the LUT count varies from 65 to 80 LUTs, and for a x18 design the LUT
count varies from 85 to 100 LUTs. The LUT count for a x36 design varies from 125 to 130
LUTs.

Performance Expressed in Maximum Read and/or Write Clock Frequency

The maximum read and/or write clock rate is >500 MHz for all configurations and modes,
except for the 512 x 36 configuration with write clock > read clock, where the max
frequency for standard mode is 473 MHz, and for FWFT mode it is 488 MHz.

CORE Generator Tool Implementation

The CORE Generator tool should be used to implement this solution. FIFO Generator (v3.2
and above) automatically implements the work-arounds detailed above. The device
utilization is detailed in the core data sheet, which can be accessed from:

http:/ /www.xilinx.com /bvdocs/ipcenter/data_sheet/fifo_generator_ds317.pdf

Both synchronous and asynchronous FIFOs can be implemented using FIFO Generator
block RAM FIFOs available from the CORE Generator tool instead of using the FIFO16
primitives. The block RAM-based implementations are slower than FIFO16-based
implementations because the FIFO control logic is implemented in the fabric of the device.

168

www.Xxilinx.com Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com
http://www.xilinx.com/bvdocs/ipcenter/data_sheet/fifo_generator_ds317.pdf

SOXILINX®

FIFO16 Error Condition and Work-Arounds

The FIFO16 built-in FIFO configurations from the FIFO Generator Core incurs the same
issues described above.

Note: When the scriptis used, RDCOUNT and WRCOUNT might not be an accurate representation
of the number of bits read from and written to the FIFO.

Please review the FIFO Generator Data Sheet for more information:

http:/ /www.xilinx.com/xInx/xebiz /designResources /ip_product_details.jsp?sGlobalNa
vPick=PRODUCTS&sSecondaryNavPick=Intellectual+Property&key=FIFO_Generator

Software Updates

Starting with ISE 8.1i Service Pack 1 software, the tools automatically detect when a
synchronous FIFO16 (RDCLK and WRCLK are connected) has been inserted into a design
and issue the following warning:

WARNING: PhysDesignRules:1447 - FIFO1l6 XLXI_1 has been found to have
both RDCLK and WRCLK input pins connected to the same source
XLXN_5_BUFGP. Under certain circumstances, the flag behavior to the
FIFO may be undeterministic. Please consult the Xilinx website for
more details.

To remove this warning, use the CORE Generator software FIFO solution or the
Synchronous FIFO work-around described above.

Software IP Cores

For information on what software IP cores are affected by this issue, check the following
page:

http:/ /www.xilinx.com /ipcenter/coregen/advisories/ip_cores_impacted_by_fifol6_ar2
2462_issue.htm

Virtex-4 FPGA User Guide www.Xxilinx.com 169
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com
http://www.xilinx.com/xlnx/xebiz/designResources/ip_product_details.jsp?sGlobalNavPick=PRODUCTS&sSecondaryNavPick=Intellectual+Property&key=FIFO_Generator
http://www.xilinx.com/xlnx/xebiz/designResources/ip_product_details.jsp?sGlobalNavPick=PRODUCTS&sSecondaryNavPick=Intellectual+Property&key=FIFO_Generator
http://www.xilinx.com/ipcenter/coregen/advisories/ip_cores_impacted_by_fifo16_ar22462_issue.htm
http://www.xilinx.com/ipcenter/coregen/advisories/ip_cores_impacted_by_fifo16_ar22462_issue.htm

Chapter 4: Block RAM & XILINX®

Solution 2: Work-Around Using a Third Fast Clock

If the frequencies of WRCLK and RDCLK are low enough, it is possible to synchronize
FIFO reads and writes to a third asynchronous fast clock (FASTCLK). The ALMOSTFULL
and ALMOSTEMPTY flags are generated in this fast clock domain. These flags are then
resynchronized to their respective clocks.

The system described in this solution requires a minimum of 2 and a maximum of 3 fast
clock cycles to process a single read or write cycle. To handle back-to-back read or writes,
the fast process must complete within one RDCLK or WRCLK period. Thus, the fast clock
must be at least three times faster than the faster of WRCLK and RDCLK.

For example, if the fastest RDCLK or WRCLK is 125 MHz, then FASTCLK could be
400 MHz (400/125 = 3.2).

Design Description

The circuit shown in Figure 4-27 is used to generate the “words in FIFO” (WIF) signal. The
Up/Down counter must be large enough to hold the maximum number of words in the
FIFO; e.g., 10 bits wide if the FIFO depth is 512 words.

)

D Q
WREN — CE
WRCLK —— P RST

Write

K — DQbDQ—'

CE Wr WM

RST r RST r RST

]

[1

)

D Q
Words in FIFO
RDEN CE
INC
RDCLK RST

Read . _)D_ CE

J ' CNTR[9:0] |— WIF[9:0]

UP/DOWN
CNTR

)

D Q D D Q
CE —_) Rd QlRm

RST
r RST l_ RST l_ RST {
FASTCLK -
RST
UG070_c4_28_ 020607
Figure 4-27: WIF Signal Generation
The WIF signal is used along with the ALMOST_EMPTY_OFFSET to generate the
ALMOST_FULL and ALMOST_EMPTY flags, as shown in Figure 4-28.
170 www.xilinx.com Virtex-4 FPGA User Guide

UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

SOXILINX®

FIFO16 Error Condition and Work-Arounds

Depth is 3 less than

depth of the FIFO16;
e.g., 509 rather than
512.

N —

WIF [9:0]

ALMOSTFULL

A>B D Q D Q D Q
Depth - ALMOST_FULL_OFFSET

(Design Constant) — RST RST RST
WRCLK F F

RST

SET SET SET [ALMOSTEMPTY
A<B D Q D Q D Qf—mMmMM

ALMOST_EMPTY_OFFSET -

(Design Constant)

FASTCLK

RDCLK

UG070_c4_29_020307
Figure 4-28: ALMOSTFULL and ALMOSTEMPTY Signal Generation
For this design to work, the ALMOST_FULL_OFFSET and ALMOST_EMPTY_OFFSET for
the FIFO16 instantiations must be fixed values as shown below:

defparam fifol6.ALMOST FULL_OFFSET = 12'h001; // do not change this line
defparam fifol6.ALMOST EMPTY_OFFSET= 12'hlFE; // set this to FIFO1l6 depth - 2

The FIFO16 configurations supported are 4K x 4, 2K x 9, 1K x 18, and 512 x 36.
Two DCMs can be used to generate the FASTCLK as shown in Figure 4-29.

DCM_BASE DCM_BASE
CLKO CLKO BUFG
Medium Clock

Slow Clock CLKIN CLK2X CLKIN CLK2X —|>— FASTCLK

CLKDV CLKDV

CLKFX CLKFX
(no connect) —— CLKFB (no connect) —— CLKFB

System Reset RST LOCKED [>o RST LOCKED |—{ >0—— RsT

UG070_c4_30_020307

Figure 4-29: FASTCLK Generator

In some cases, only one DCM is needed to generate FASTCLK. The FASTCLK signal
should be connected to all instances of module fifo_third_clk_flags in the design.
The output RST signal is connected to all FIFOs and all instances of module
fifo_third_clk_flags. Clock feedback must be specified as NONE on both DCMs
(defparam dem.CLK_FEEDBACK = “NONE”).

Virtex-4 FPGA User Guide www.Xxilinx.com 171
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 4: Block RAM

SIXILINX®

FASTCLK (400 MHz)

WRCLK (125 MHz)

WREN (From User)

Wr

WM

Writ

Notes:

The ALMOSTEMPTY flag is delayed from 1 to 2 RDCLK periods after the condition is
detected.

The ALMOSTFULL flag is delayed from 1 to 2 WRCLK periods after the condition is
detected.

The DCM generating the FASTCLK clock must be locked before the FIFOs can be
used. (The STARTUP_WAIT attribute can be used to make sure that the DCMs are
locked before the configuration is done.)

The FASTCLK clock must be continuously available when any of the FIFOs in the
system are being used. (Monitor the LOCK signals from all the DCMs to make sure
that the FASTCLK clock is running. If LOCK goes Low, the DCMs should be reset.)

For this design to work properly the maximum words in the FIFO16 must never
exceed the nominal maximum - 3; e.g., a 512 word FIFO must never contain more than
509 words.

This work-around does not currently provide a FULL flag. However, the EMPTY flag
from the FIFO16 can be used.

Timing Diagram

The timing diagram for the worst-case write condition is shown in Figure 4-30. The
diagram depicts two back-to-back FIFO write cycles. This is a “worst-case” diagram,
because the rising edge of WRCLK slightly trails the rising edge of FASTCLK when write
enable (WREN) is TRUE. Please refer to Figure 4-27 for signals Wr and WM. Signal Wr is
asynchronous to FASTCLK and the leading edge of WM might be metastable. FASTCLK
and WRCLK depictions are drawn to scale, relative to each other.

The Read timing is similar to the Write timing shown in Figure 4-30.

| __\:_____J,__J____

UGO070_c4_31_020307

Figure 4-30: Write Timing Diagram

172

www.Xxilinx.com Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

2:)(||_|NX® FIFO16 Error Condition and Work-Arounds

Resource Utilization

The resources used in implementing the solution described above with a 400 MHz
FASTCLK are as follows.

The design was implemented using the ISE 8.1i software with default settings for MAP,
Place, and Route. The approximate resource count was 20 LUTs and 24 flip-flops per FIFO.
One DCM is required to generate a 400 MHz clock if a 200 MHz input clock is available.
Two DCMs are needed if only a 100 MHz input clock is available. One extra BUFG was
used per device.

Performance

The maximum FASTCLK frequency for each speed grade is Global Clock Tree FMAX, as
given in the Virtex-4 Data Sheet. If any back-to-back reads or writes occur, the maximum
RDCLK and WRCLK frequency is 1/3 the FASTCLK frequency. If the system design
guarantees that there is at least one clock cycle between all reads and all writes, then the
maximum RDCLK and WRCLK frequency is 2/3 the FASTCLK frequency. If the system
design guarantees that there are at least two clock cycles between all reads and all writes,
then the RDCLK and WRCLK frequency can be equal to the FASTCLK frequency.

Design Files

All the necessary files required for the above design are contained in a ZIP archive
downloadable from the Xilinx website at:

https:/ /secure.xilinx.com /webreg / clickthrough.do?cid=30163

Open the ZIP archive and extract FIFO16_solution2. zip.

Virtex-4 FPGA User Guide www.Xxilinx.com 173
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com
https://secure.xilinx.com/webreg/clickthrough.do?cid=30163

Chapter 4: Block RAM

SIXILINX®

Solution 3: FIFO Flag Generator Using Gray Code

The incorrect operation of the FIFO16 after a specific sequence of events occurs only on the
flag signals. Once the flag signals are incorrect, the FIFO operation itself can be affected.

In Solution 3, the FIFO flags are generated outside the FIFO16. The externally generated
flags are used in conjunction with the FIFO16 to give the complete FIFO solution. This
solution can also be used if the customer design has the read or write clock stopped in
between during the FIFO operation.

In the solution described here, the FIFO memory address space is divided into 16 sectors.
The number of word in each sector depends on the FIFO depth and is given by FIFO
Depth/ 16. The granularity of this solution is equal to the number of words in each sector.

Design Description

Four bits are used to identify the 16 sectors within the memory. The four bits are the four
MSB bits of the WRCOUNT signal from the FIFO16.The ALMOSTFULL flag goes true if

the current read sector is equal to the current write sector + 1, 2, or 3. Three binary to gray
code converters uses the four WRCOUNT MSB bits to convert from binary to gray +1, gray

+2, and gray +3 values as shown in Figure 4-31.

. RAgray[3:0] 6 Synchronizers
Binary — Gray + 1 4LUTs
IN - ouT] SRy
o o) == | @
0010 0010 PRE
WRCOUNT 0011 0110
[msb:msb-3] 0100 0111 [3:0] [3:0] RST
el [N[3:0] 9107 0701 OUT[3:0] D[3:0] Q[3:0] ,
o i (32) |
LUT
1090 1110 32| == D Q
1011 1010
1100 1011
1101 1001
1110 1000 RST
1111 0000
Binary — Gray + 2 ,
IN OuUT 4 LUTs [1:0] LUt I
0000 0011 |)| == D Q
0001 0010 : LUT
WRCOUNT 0017 oirt 0] PRE g
[msb:msb-3] 0100 0101 3:0 3:0
IN[3:0] 319 9199 ouT(3:0] D[3:0] Q[3:0] RTQ’T
%00 1% [3:2] |
- LUT
1690 1010 3:2]| == D Q
1011 1011
1100 1001
1190 6000
1111 0001 RIQ’T
Binary — Gray + 3 TI
IN OuT 4 LUTs [1:0] \
0000 0010 ’ LUT L
ey g o == —o @
WRCOUNT 0011 0101 PRE LuT
[msb:msb-3] oo o1ct . .
] IN[3:0] 190 1189 OUTI3:0] | [3:0] [3:0] RST
o111 1111 D[3:0] Q[3:0] ;
1008 1010 [3:2] !
1010 1011] LUT
1011 1001 [8:2]] == D Q
1100 1000
1101 0000
1110 0001
1111 0011 RST
WRCLK
RST
Figure 4-31: Intermediate Signal Generation for ALMOSTFULL Flag

AF1

D Qf—
—p RST
1

' AF2

D Qf—
b RST
1

' AF3

D Qf—
P RST

UG070_c4_32_020607

174

www.Xxilinx.com

Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

SOXILINX®

FIFO16 Error Condition and Work-Arounds

Flag AF1, AF2, or AF3 goes High if the read sector (RAgray) is equal to write counter sector
one, two, or three respectively. A High on one of these flags sets the ALMOSTFULL flag
High as shown in Figure 4-32.

Because the circuit is operating in two clock domains (RDCLK and WRCLK), there is a
possibility that the OR of AF1, AF2, and AF3 could spike FALSE as one of these signals
transitions FALSE and another transitions TRUE. To prevent ALMOSTFULL from
erroneously going FALSE when this occurs, a flip-flop is added to the circuit. This flip-flop
adds the requirement that the OR output must be FALSE for two consecutive WRCLK
periods for ALMOSTFULL to go FALSE. The ALMOSTEMPTY circuit works in a similar
fashion.

Binary — Gray 4LUT
N oour T
0000 0000
0001 0001
RDCOUNT g0 oony
[msb:msb-3] 0100 0110 [3:0] [3:0] RAgray[3:0]
IN[3:0] 9191 9111 OUT[3:0] D[3:0] Q[3:0]
0111 0100 RDCLK
1 e RST
1010 1111
1011 1110
1100 1010
1101 1011
1110 1001
1111 1000
= T —————————— A
| | |
AF1
AF2 L= I : ALMOSTFULL
] JLut i D Q
AF3 | ,_3_/ |
5\:::}- D Q : : —b RST
I | !
FULL
F RST : WRCOUNT[msb-4] [LUT : D Q
RDCLK . RST

RST

UG070_c4_33_020607

Figure 4-32: ALMOSTFULL and FULL Flag Generation

The FULL flag goes true when the above ALMOSTFULL flag conditions are true AND the
next most significant bit of WRCOUNT is a one.

If WRCLK is halted, ALMOSTFULL and FULL are frozen in their current states. When
WRCLK restarts, these flags can switch, subject to the delays specified above. (Note that
this is the behavior of all asynchronous FIFOs, because the ALMOSTFULL and FULL flags
are always synchronous to the write clock.)

The ALMOSTEMPTY flag goes true if the current read sector is equal to the current write
sector, or if the current read sector is equal to the current write sector - 1. ALMOSTEMPTY
flag is generated similar to the ALMOSTFULL flag and is shown in Figure 4-33.

Setting of the ALMOSTEMPTY flag occurs between two and three RDCLK periods after an
equality comparison goes true.

Virtex-4 FPGA User Guide www.Xxilinx.com 175
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 4: Block RAM ST XILNX®

I
PRE
D Qf—
. ! ALMOST
4 Synchronizers PRE PRE | EMPTY
D Q LUD—D Qf———
Binary — Gray + 2 RA . —]
gray[3:0]
N our 4LUTs |
0000 0000 '
el o0 :
0011 0110 [1:0] > !
o o T g PRE
0110 0100 : LUT D Q
WRCOUNT foo 1101 |
[msb:msb-3] 1001 1113 [3:0] [3:0] : T
IN[3:0] 1319 1319 oUT[3:0] D[3:0] Q[3:0] ,
e N | B2 ——
| LUT
1 108 RST [3:2]| == D Q
Binary — Gray + 3 -
IN OuUT 4 LUTs
0000 1000
0001 0000 X
0010 0001 i
030 0010 [1:0] : '
0101 0110 ! 1 LuT PRE PRE
o1 Ol , [1:0]] == D Q LUT
iashoval i e e
msb:msb-
; IN[3:0]]8]9 H?} OUT[3:0] | [3:0] [3:0]] . —
1100 1110 D[3:0] Q[3:0] |
et o [3:2)
1111 1001 RST [3:2] L=U=T DPREQ
WRCLK]
RST
WRCLK

UGO070_c4_34_020607

Figure 4-33: ALMOSTEMPTY Flag Generation

Notes:
e The FULL flag does not mean that the FIFO is full; it means that half of the sector has
been written into after the ALMOSTFULL flag went true.

e Setting and clearing of ALMOSTFULL occurs between two and three WRCLK periods
after equality goes true or false, respectively in Figure 4-32.

e Setting and clearing of the FULL flag is delayed as with the ALMOSTFULL flag.

e C(Clearing of the ALMOSTEMPTY flag occurs between 3 and 4 RDCLK periods after an
equality goes false in Figure 4-33.

Resource Utilization

In this design, the combinatorial logic delay between flip-flops is never comprised of more
than one LUT. A total of 39 LUTs and 41 flip-flops are used.

Performance

The performance of this logic matches the performance of the FIFO16 module for each
speed grade as given in the Virtex-4 Data Sheet.

176 www.Xxilinx.com Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

2:)(||_|NX® FIFO16 Error Condition and Work-Arounds

Design Files

All the necessary files required for the above design are contained in a ZIP archive
downloadable from the Xilinx website at:

https:/ /secure.xilinx.com /webreg / clickthrough.do?cid=30163

Open the ZIP archive and extract FIFO16_solution3. zip.

Solution Summary

The following criteria can be used to choose a particular solution for the design.

e “Solution 1: Synchronous/Asynchronous Clock Work-Arounds” should be used if:
¢ Design is currently supported in the CORE Generator tool
¢ Design is required to run at the maximum FIFO16 clock rates
¢ Exact values are required for the ALMOSTEMPTY and ALMOSTFULL Flags
.

Resource utilization is more than that for Solution 2 and Solution 3 (see Solution 1
for details)

¢ Continuous RDCLK and WRCLK are available after RST

e “Solution 2: Work-Around Using a Third Fast Clock” should be used if:
¢ Smallest resource utilization is required
¢ RDCLK and WRCLK needs to be intermittently stopped after RST

¢ Design is not required to run at the maximum FIFO16 clock rates (see Solution 2
for more details)

¢ The generation of a third continuous fast clock is feasible

¢ ALMOSTEMPTY and ALMOSTFULL flags can be delayed by from 1 to 2 RDCLK
or WRCLK periods, respectively

e “Solution 3: FIFO Flag Generator Using Gray Code” should be used if:
¢ Design is required to run at the maximum FIFO16 clock rates

Resource utilization smaller than Solution 1 is required

RDCLK and WRCLK needs to be intermittently stopped after RST

¢ ALMOSTEMPTY and ALMOSTFULL flags need not be exact and can be within a
range.

¢
¢

Virtex-4 FPGA User Guide www.Xxilinx.com 177
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com
https://secure.xilinx.com/webreg/clickthrough.do?cid=30163

Chapter 4: Block RAM

SIXILINX®

Built-in Block RAM Error Correction Code

wraddr
RDADDRIS8:0] /ﬂdr -
Block RAM
64-bit %8 512 x 36
DI[63:0] 2l SO |Dataln L T
—_ \—/
. 64, | 36 f
DO[63:0] ; Decode |pataout /4 —F—
) and - 72, 36,
STATUS[1:0] - / Correct N T Block RAM
\—__/
— 9, 512 x 36
7 |
WRADDR[8:0] —e wraddr 9/ >

Two vertically adjacent block RAMs can be configured as a single 512 x 64 RAM with built
in Hamming error correction, using the extra eight bits in the 72-bit wide RAM. The
operation is transparent to the user. The eight protection bits are generated during each
write operation, and are used during each read operation to correct any single error, or to
detect (but not correct) any double error. Two status outputs indicate the three possible
read results: No error, single error corrected, double error detected. The read operation
does not correct the error in the memory array, it only presents corrected data on DO.

This error correction code (ECC) configuration option is available with almost all block
RAM pairs as long as the lower RAM is instantiated in an even numbered row. However,
the ECC configuration cannot use the one block RAM immediately above or below the
PowerPC® 405 blocks in Virtex-4 devices.

The functionality of the block RAM is changed when using the ECC mode.

e The two block RAM ports still have independent address, clocks, and enable inputs,
but one port is a dedicated write port, and the other is a dedicated read port.

e DO represents the read data after correction.
e DO stays valid until the next active read operation.

¢ Simultaneous reading and writing, even with asynchronous clocks, is allowed, but
requires careful clock timing if read and write addresses are identical.

e The READ_FIRST or WRITE_FIRST modes of the normal block RAM operation are
not applicable to the ECC configuration.

Top-Level View of the Block RAM ECC Architecture

Figure 4-34 shows the top-level view of a Virtex-4 FPGA block RAM in ECC mode.

9 (\
.
/

—/

ug070_4_34_030708

Figure 4-34: Top-Level View of Block RAM ECC

178

Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

www.Xxilinx.com

http://www.xilinx.com

SOXILINX®

Built-in Block RAM Error Correction Code

Block RAM ECC Primitive
Figure 4-35 shows RAMB32_S64_ECC, the block RAM ECC primitive.

RAMB32_S64_ECC

DI<63:0> DO<63:0> [—

WRADDR<8:0>
RDADDR<8:0>

TAT 1: —
WREN STATUS<1:0>

RDEN
SSR
WRCLK
RDCLK

ug070_4_ECC_022204

Figure 4-35: RAMB32_S64_ECC: Block RAM ECC Primitive

Block RAM ECC Port Description
Table 4-17 lists and describes the block RAM ECC I/O port names.

Table 4-17: Block RAM ECC Port Names and Descriptions

Port Name Direction Signal Description
DI<63:0> Input Data input bus
WRADDR<8:0> Input Write address bus
RDADDR<8:0> Input Read address bus
WREN Input Write enable. When WREN = 1, data will be written into
memory. When WREN = 0, write is disabled
RDEN Input Read enable. When RDEN = 1, data will be read from
memory. When RDEN = 0, read is disabled
SSR Input Not supported when using the block RAM ECC primitive.
Always connect to GND.
WRCLK Input Clock for write operations
RDCLK Input Clock for read operations
DO<63:0> Output | Data output bus
STATUS<1:0>(1) Output | Error status bus
Notes:

1. Hamming code implemented in the block RAM ECC logic detects one of three conditions: no
detectable error, single-bit error detected and corrected on DO (but not corrected in the memory), and
double-bit error detected without correction. The result of STATUS<1:0> indicates these three

conditions.

Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

www.Xxilinx.com 179

http://www.xilinx.com

Chapter 4: Block RAM

SIXILINX®

Error Status Description

The block RAM ECC is able to detect single- and double-bit errors from the block RAM.
However, only the single-bit error can be corrected. The ECC logic does not correct the bit
in the actual block RAM storage location. If the block RAM location containing the bit error
is not overwritten, then further reads from that location causes the ECC logic to continue to
correct the error. Table 4-18 is the truth table for the STATUS bits.

Table 4-18: STATUS Bit Truth Table

STATUS[1:0] Description
00 No bit error.
01 Single-bit error. The block RAM ECC macro detects and automatically
corrects a single-bit error.
10 Double-bit error. The block RAM ECC macro detects a double-bit error.
11 Undefined, not a valid status error.

Block RAM ECC Attribute

In addition to the built-in registers in the decode and correct logic, the RAMB32_S64_ECC
primitive allows the use of optional pipeline registers to produce higher performance with
one additional latency. Valid values for the DO_REG attribute are 0 or 1.

Block RAM ECC VHDL and Verilog Templates

VHDL and Verilog templates are available in the Libraries Guide.

Block RAM ECC VHDL Template

-- RAMB32_S64_ECC: To incorporate this function into the design,

-= VHDL
- instance

-- declaration :
: declarations after the "=>" assignment can be changed

- code

-- Library

-— declaration :

-- for
-— Xilinx

-— primitives

: the following instance declaration needs to be placed

in the architecture body of the design code. The
instance name (RAMB32_S64_ECC_inst) and/or the port

to properly connect this function to the design.

: All inputs and outputs must be connected.

In addition to adding the instance declaration, a
use declaration statement for the UNISIM.v
components library needs to be added before the
entity declaration. This library contains the
component declarations for all Xilinx primitives
and points to the models that will be used for
simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exists.

Library UNISIM;

use UNISIM.vcomponents.all;

-- <---Cut code below this line and paste into the architecture body-->

-— RAMB32_S64_ECC: Virtex-4 512 x 64 Error Correction Block RAM
-- Virtex-4 FPGA User Guide

180

www.Xxilinx.com Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

SOXILINX®

Built-in Block RAM Error Correction Code

RAMB32_ S64_ ECC_inst:

generic map (

DO_REG => 0,

port map (

)

DO => DO,

STATUS => STATUS,
DI => DI,

RDADDR => RDADDR,
RDCLK => RDCLK,
RDEN => RDEN,

SSR => SSR,
WRADDR =>WRADDR,
WRCLK => WRCLK,
WREN => WREN

RAMB32 S64_ECC_inst (

-- Optional output registers (0 or 1)

-- 64-bit output data
-- 2-bit status output
-- 64-bit data input

9-bit data address input
-- 1-bit read clock input
-- 1-bit read enable input
-- 1-bit synchronous reset
-- 9-bit write address input

—— 1-
—— 1-

bit write clock input
bit write enable input

-- End of RAMB32_S64_ECC_inst instantiation

Block RAM ECC Verilog Template

RAMB32_S64_ECC Verilog:

// RAMB32_S64_ECC: To incorporate this function into the design,

//
//
//
//
//
//

//

Verilog the following instance declaration needs to be placed
instance in the body of the design code. The instance name
declaration (RAMB32_S64_ECC_inst) and/or the port declarations
code within the parenthesis can be changed to properly

reference and connect this function to the design.
All inputs and outputs must be connected.
<===== Cut code below this line---->

// RAMB32_S64_ECC: Virtex-4 512 x 64 Error Correction Block RAM
// Virtex-4 FPGA User Guide

RAMB32_S64_ECC # (

)

)

.DO_REG(0) ,

RAMB32_S64_ECC_inst

.DO(DO) , /7
. STATUS (STATUS), //
.DI(DI), /7
.RDADDR (RDADDR) , //
.RDCLK (RDCLK) , /7
.RDEN (RDEN) , /7
.SSR(SSR) , /7
.WRADDR (WRADDR) , //
.WRCLK (WRCLK) , /7
.WREN (WREN) /7

(

// Optional output registers (0 or 1)

64-bit output data

2-bit

status output

64-bit data input

9-bit
1-bit
1-bit
1-bit
9-bit
1-bit
1-bit

data address input
read clock input
read enable input
synchronous reset
write address input
write clock input
write enable input

// End of RAMB32_S64_FECC_inst instantiation

Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

www.Xxilinx.com

181

http://www.xilinx.com

Chapter 4: Block RAM & XILINX®

182 www.Xxilinx.com Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

S XILINX®
Chapter 5

Configurable Logic Blocks (CLBs)

CLB Overview

The Configurable Logic Blocks (CLBs) are the main logic resource for implementing
sequential as well as combinatorial circuits. Each CLB element is connected to a switch
matrix to access to the general routing matrix (shown in Figure 5-1). A CLB element
contains four interconnected slices. These slices are grouped in pairs. Each pair is
organized as a column. SLICEM indicates the pair of slices in the left column, and SLICEL
designates the pair of slices in the right column. Each pair in a column has an independent
carry chain; however, only the slices in SLICEM have a common shift chain.

The Xilinx® tools designate slices with the following definitions. An “X” followed by a
number identifies a column of slices. The number counts up in sequence from the left to the
right. A “Y” followed by a number identifies the position of each slice in a pair as well as
the CLB row. The “Y” number counts slices starting from the bottom in sequence: 0, 1,0, 1
(the first CLB row); 2, 3, 2, 3 (the second CLB row); etc. Figure 5-1 shows the CLB located in
the bottom-left corner of the die. Slices X0Y0 and X0Y1 constitute the SLICEM column-pair,
and slices X1Y0 and X1Y1 constitute the SLICEL column-pair. For each CLB, SLICEM
indicates the pair of slices labeled with an even number — SLICE(0) or SLICE(2), and
SLICEL designates the pair of slices with an odd number — SLICE(1) or SLICE(3).

SLICEM | SLICEL
(Logic or Distributed RAM or Shift Register) | (Logic Only)

SHIFTIN CouT

e | T _______]
L SLICE (3)
< T I > X1Y1 <:II:>
| | o
| SLICE (1) ﬁ
< | couT I > X1Y0 I Interconnect
Switch| | ' | to Neighbors
Matrix [| : CIN |
SLICE (2)
<::> X0Y1 < ; T >
| ! |
' SLICE (0) ! '
| X0Y0 < T | >
S s, S I j
SHIFTOUT CIN | ug070_5_01_071504
Figure 5-1: Arrangement of Slices within the CLB
Virtex-4 FPGA User Guide www.xilinx.com 183

UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 5: Configurable Logic Blocks (CLBs)

SIXILINX®

Slice Description

The elements common to both slice pairs (SLICEM and SLICEL) are two logic-function
generators (or look-up tables), two storage elements, wide-function multiplexers, carry
logic, and arithmetic gates. These elements are used by both SLICEM and SLICEL to
provide logic, arithmetic, and ROM functions. SLICEM supports two additional functions:
storing data using distributed RAM and shifting data with 16-bit registers. SLICEM
(shown in Figure 5-2, page 185) represents a superset of elements and connections found in
all slices. SLICEL is shown in Figure 5-3, page 186.

CLB/Slice Configurations

Table 5-1 summarizes the logic resources in one CLB. All of the CLBs are identical and each
CLB or slice can be implemented in one of the configurations listed.Table 5-2 shows the
available resources in all CLBs.

Table 5-1: Logic Resources in One CLB
Slices | LUTs | Flip-Flops | MULT_ANDs é:::;"g:ns; Di;t:\iﬂ%t)e ‘ Reg?:ti(fetrs“)
4 8 8 8 2 64 bits 64 bits
Notes:
1. SLICEM only
Table 5-2: Virtex-4 FPGA Logic Resources Available in All CLBs
Dece | (SLBATMY | Neberol | N Dsnbsananor | b
Shift Registers (Kb)

XC4VLX15 64 x 24 6,144 12,288 96 12,288
XC4VLX25 96 x 28 10,752 21,504 168 21,504
XC4VLX40 128 x 36 18,432 36,864 288 36,864
XC4VLX60 128 x 52 26,624 53,248 416 53,248
XC4VLX80 160 x 56 35,840 71,680 560 71,680
XC4VLX100 192 x 64 49,152 98,304 768 98,304
XC4VLX160 192 x 88 67,584 135,168 1056 135,168
XC4VLX200 192 x 116 89,088 178,176 1392 178,176
XC4VSX25 64 x 40 10,240 20,480 160 20,480
XC4VSX35 96 x 40 15,360 30,720 240 30,720
XC4VSX55 128 x 48 24,576 49,152 384 49,152
XC4VEX12 64 x 24 5,472 10,944 86 10,944
XC4VEFX20 64 x 36 8,544 17,088 134 17,088
XC4VFX40 96 x 52 18,624 37,248 291 37,248
XC4VEX60 128 x 52 25,280 50,560 395 50,560
XC4VFX100 160 x 68 42,176 84,352 659 84,352
XC4VFX140 192 x 84 63,168 126,336 987 126,336

184

www.Xxilinx.com

Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

SOXILINX®

CLB Overview

To/From Slice on Top

SHIFTIN cout
coutuseo To Fabric
1
N pY8usED = B
YBMUX
CYMUXG Q
From 0 Jp BYouTUSED = Bvour
p BYINVOUTUSED SYINVOUT
FSMUX
FXINE
0 1\ FXUSED x
FXINA ld =
=
YMUXUSED
N YMUX
ODUAL_PORT D =
OSHIFT_REG YUSED
N
9—64 A4 oot . [ve 14 = Y
G3 |
G2 A3 pam D YMUX \|
= A2 | Y D Q = va
=G1 OROM P OFF
¥ P £ ovatcn
WG4 oK
wea MCis DYMUX
wa oI
e oiNTo
VGys DI DSRHIGH
= 3 OSRLOW
SR_REV FFY
ALTDIG |
J
BY
G2 ™|
PrROD ™|
<]
1—) DIGUSED
GAND D =0
o—] D G
cvoa
B b
REVUSED
; xaw
SLICEWET SLICEWE1USED 1, BUSED
= [l | = xB
B sTcewensen Weo o o g
WE =
K WSE
WSGEN
FSMUX
—|| N
N F5USED
SHIFTIN lo/]) 14 5
L F5
XMUXUSED
o™ FXOR D > XMUX
BX
_>l/l | XORF FXMUX N XUSED
= \ =X
DIF [~ TR 14
=F UX DI)
F3 A4 ot b xB,
= A3 ORAM MY
= A2 D Q =>xa
=E a1 OROM —) ce B
=[x G OLATCH
— ﬁ;ﬂiig WF4 MC15 DXMUX
> g WF3 oiNT1
WE 2USED WF2 oiNiTo
WE TUBED WF1 CSRHIGH
OSRLOW
[C1DUAL_PORT SR_REV FFX
osHIFT_ReG |F
0
F1
1 =] CYINIT
FAND !\
CcYoF BXCIN
ox BX
= D>
BX_B BXINV
CcE
= =D
CEB Feemv
CLK
(=S ZD RESET TYPE
CLKB
o Cuany
0
> oD D
SRB sainy SRFFMUX -SYNC_ATTR
SHIFTOUTUSED o

SHIFTOUT

To/From Slice on Bottom

Figure 5-2: Diagram of SLICEM

UG070_5_02_071504

Virtex-4 FPGA User Guide

UGO070 (v2.6) December 1, 2008

www.Xxilinx.com

185

http://www.xilinx.com

Chapter 5: Configurable Logic Blocks (CLBs)

SIXILINX®

couT

-COUTUSED

) VB
-YBUSED
so \CcYmuxa
-F5MUX
FXINB
)
FXINA k4 =X
= -FXUSED
i = yMUX
“YMUXUSED
Y
v
& A4 2 v
=8 A3 D \I -YUSED
D%f A2 Y [) o Q —va
= Al — B —t/ = LATCH
-DYMUX
G INIT1
INITO
SRHIGH | -FFY_INIT_ATTR
SRLOW
SR REV | -FFY_SR_ATTR
-CY0G FrY
Y
G2
:‘) PROD
G3
L — ————————
-GAND 1
-BYINV
BY S
== B
BY.B -REVUSED
)
T xB
-CYMUXF i
XBUSED
S0
_|1 3 -FSUSED
Ny
T F5
SQ v
F5| -Fsmux
XMUXUSED
i > XMUX
FXOR ooy & -XUSED N
>
F4 A XB__-DXMUX
— Eg A3 D| MU
= A2 XORF X D Q) = xa
—H Al o e OFF
BX OLATCH
ck
E
oIt
oiNITo
OsrrigH | FPXUNIT_ATTR
OSRLOW
SR REV -FFX_SR_ATTR
FFX
BX
1 2
F3
L — BXCIN
1=
-FAND o
-cvor| [-cvinm
BX BX
BX B
“BXINV
ce CcE
=)
TEINV
oLk CLK
= LK
“CLKINV RESET TYPE
SR)
= i)
“SRINV
-SYNC_ATTR
CIN ug070_5_03_071504
Figure 5-3: Diagram of SLICEL
186 www.xilinx.com Virtex-4 FPGA User Guide

UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

2:)(||_|NX® CLB Overview

Look-Up Table (LUT)

Virtex-4 FPGA function generators are implemented as 4-input look-up tables (LUTs).
There are four independent inputs for each of the two function generators in a slice (F and
G). The function generators are capable of implementing any arbitrarily defined four-input
Boolean function. The propagation delay through a LUT is independent of the function
implemented. Signals from the function generators can exit the slice (through the X or Y
output), enter the XOR dedicated gate (see “Arithmetic Logic”), enter the select line of the
carry-logic multiplexer (see “Fast Lookahead Carry Logic”), feed the D input of the storage
element, or go to the MUXF5.

In addition to the basic LUTs, the Virtex-4 FPGA slices contain multiplexers (MUXF5 and
MUXEX). These multiplexers are used to combine up to eight function generators to
provide any function of five, six, seven, or eight inputs in a CLB. The MUXFX is either
MUXF6, MUXF7, or MUXFS8 according to the position of the slice in the CLB. The MUXEX
can also be used to map any function of six, seven, or eight inputs and selected wide logic
functions. Functions with up to nine inputs (MUXF5 multiplexer) can be implemented in
one slice (see Figure 5-14, page 198). Wide function multiplexers can effectively combine
LUTs within the same CLB or across different CLBs making logic functions with even more
input variables.

Storage Elements

The storage elements in a Virtex-4 FPGA slice can be configured as either edge-triggered
D-type flip-flops or level-sensitive latches. The D input can be driven directly by a LUT
output via the DX or DY multiplexer, or by the slice inputs bypassing the function
generators via the BX or BY input.

The control signals clock (CLK), clock enable (CE) and set/reset (SR) are common to both
storage elements in one slice. All of the control signals have independent polarity. Any

inverter placed on a control input is automatically absorbed. The clock-enable signal (CE)
is active High by default. If left unconnected, the clock enable defaults to the active state.

In addition to clock (CLK) and clock enable (CE) signals, each slice has set and reset signals
(SR and BY slice inputs). SR forces the storage element into the state specified by the
attribute SRHIGH or SRLOW. SRHIGH forces a logic High when SR is asserted. SRLOW
forces a logic Low. When SR is used, an optional second input (BY) forces the storage
element into the opposite state via the REV pin. The reset condition is predominant over
the set condition. (See Figure 5-4.) The truth tables for SR are described in“ILOGIC
Resources” in Chapter 7.

The initial state after configuration or global initial state is defined by a separate INITO and
INIT1 attribute. By default, setting the SRLOW attribute sets INITO, and setting the
SRHIGH attribute sets INIT1.

For each slice, set and reset can be synchronous or asynchronous. Virtex-4 devices can set
INITO and INIT1 independent of SRHIGH and SRLOW.

Virtex-4 FPGA User Guide www.Xxilinx.com 187
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 5: Configurable Logic Blocks (CLBs) 2:)(||_|NX®

FFY
OFF
OLATCH
LUT G Output :D_ D Q YQ
CE Attribute
ek INITA
SR REV INITO
SRHIGH
BY |:>—[CD SRLOW
FFX
OFF
OLATCH
Attribute
CE D_EQD
CE INIT1
CLK D_ED CK INITO
SR REV SRHIGH
SR D_E:D SRLOW
Reset Type
BX |:>—|__GD— OSYNC
UASYNC

ug070_5_04_071504

Figure 5-4: Register/Latch Configuration in a Slice

The configuration options for the set and reset functionality of a register or a latch are as
follows:

e No set or reset

e Synchronous set

e Synchronous reset

e Synchronous set and reset
e Asynchronous set (preset)
e Asynchronous reset (clear)

e Asynchronous set and reset (preset and clear)

Distributed RAM and Memory (Available in SLICEM only)

Multiple left-hand LUTs in SLICEMs can be combined in various ways to store larger
amounts of data.

The function generators (LUTs) in SLICEM can be implemented as a 16 x 1-bit synchronous
RAM resource called a distributed RAM element. RAM elements are configurable within a
CLB to implement the following:

e Single-Port 16 x 4-bit RAM
e Single-Port 32 x 2-bit RAM
e Single-Port 64 x 1-bit RAM
¢ Dual-Port 16 x 2-bit RAM

Distributed RAM modules are synchronous (write) resources. A synchronous read can be
implemented with a storage element in the same slice. The distributed RAM and the

188 www.Xxilinx.com Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

SOXILINX®

CLB Overview

storage element share the same clock input. For a write operation, the Write Enable (WE)
input, driven by the SR pin, must be set High.

Table 5-3 shows the number of LUTs (two per slice) occupied by each distributed RAM
configuration.

Table 5-3: Distributed RAM Configuration

RAM Number of LUTs
16 x 1S 1
16 x 1D 2
32x1S 2
64 x 1S 4

Notes:
1. S = single-port configuration; D = dual-port configuration

For single-port configurations, distributed RAM has a common address port for
synchronous writes and asynchronous reads.

For dual-port configurations, distributed RAM has one port for synchronous writes and
asynchronous reads and another port for asynchronous reads. The function generator
(LUT) has separated read address inputs and write address inputs.

In single-port mode, read and write addresses share the same address bus. In dual-port
mode, one function generator (R/W port) is connected with shared read and write
addresses. The second function generator has the A inputs (Read) connected to the second
read-only port address and the W inputs (Write) shared with the first read /write port
address.

Figure 5-5, Figure 5-6, and Figure 5-7 illustrate various example distributed RAM
configurations occupying one slice.

RAM 16x1S
rCTo T !
|
| u RAM :
Al3:0]+- Yo+ Al4:1] Dl Output
I 4 :
| WG[4:1] : L [p ol Registered
D1—|—,(BY) : —P
| WSG | (optional)
|
we SR we |
WCLK 4 CK |
|
|
!_ ________ _] ug070_5_05_071504

Figure 5-5: Distributed RAM (RAM16x1S)

Virtex-4 FPGA User Guide

www.Xxilinx.com 189

UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 5: Configurable Logic Blocks (CLBs)

SIXILINX®

RAM 32x1S

m RAM

Gl4:1] D

L WG[4:1]

WS DI

I
WSG

WEO

WE

CK
WSF

ws DI
mRAM p

Fl4:1]

L WF[4:1]

[

F5MUX

D

QpF—

A[3:0]

WE
WCLK

A[3:0]
DPRA[3:0]

Figure 5-7:

RAM 16x1D

B dual_port I
m RAM :

(optional)

Output

Registered
Output

ug070_5_06_071504

Figure 5-6: Single-Port Distributed RAM (RAM32x1S)

WG[4:1] D f-——= SPO

Gl4:1]
WS DI

WS

|
H dual_port] :
m RAM |

F[41] Dft—+—= DPO

WF[4:1]

—— e

ug070_5_07_071504

Dual-Port Distributed RAM (RAM16x1D)

190

www.Xxilinx.com

Virtex-4 FPGA User Guide

UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

SOXILINX®

CLB Overview

If two dual-port 16 x 1-bit modules are built, the two RAM16X1D primitives can occupy
two slices in a CLB, as long as they share the same clock and write enable, as illustrated in

Figure 5-8.

RAM16X1D Bit 0

: |
|
D[O | I

[0] | SPO[0] Rog :
: |
| |
| |
| |

|

| .
| DPO[0] | Req :
: |
-____

Slice M
RAM16X1D Bit 1

_______________ |
i |
|

D[1 ! [

1 SPOM] | peg | |
I I
| |
I I
| |
I I

|
| |
: DPO[M] | geq | |
| |
I I
-____ 1
Slice M

ug070_5_08_071504

Figure 5-8: Two RAM16X1D Placement

The RAM64X1S primitive occupies two slices. The RAM64X1S read path is built on the
MUXF5 and MUXF6 multiplexers.

Read Only Memory (ROM)

Each function generator in SLICEM and SLICEL can implement a 16 x 1-bit ROM. Four
configurations are available: ROM16x1, ROM32x1, ROM64x1, and ROM128x1. The ROM
elements are cascadable to implement wider and/or deeper ROM. ROM contents are
loaded at device configuration. Table 5-4 shows the number of LUTs occupied by each
configuration.

Table 5-4: ROM Configuration

ROM Number of LUTs
16x1 1

32x1 2

64x1 4

128 x 1 8
256 x 1 16 (2 CLBs)

Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

www.Xxilinx.com

191

http://www.xilinx.com

Chapter 5: Configurable Logic Blocks (CLBs) i:)("JNX®

Shift Registers (Available in SLICEM only)

A SLICEM function generator can also be configured as a 16-bit shift register without using
the flip-flops available in a slice. Used in this way, each LUT can delay serial data
anywhere from one to 16 clock cycles. The SHIFTIN and SHIFTOUT lines cascade LUTs to
form larger shift registers. The four left-hand LUTs (in SLICEM) of a single CLB are thus
cascaded to produce delays up to 64 clock cycles. It is also possible to combine shift
registers across more than one CLB. The resulting programmable delays can be used to
balance the timing of data pipelines.

Applications requiring delay or latency compensation use these shift registers to develop
efficient designs. Shift registers are also useful in synchronous FIFO and content-
addressable memory (CAM) designs. To quickly generate a Virtex-4 FPGA shift register
without using flip-flops (i.e., using the SRL16 element(s)), use the CORE Generator™ tool
RAM-based shift-register module.

The write operation is synchronous with a clock input (CLK) and an optional clock enable,
as shown in Figure 5-9. A dynamic read access is performed through the 4-bit address bus,
A[3:0]. The configurable 16-bit shift register cannot be set or reset. The read is
asynchronous; however, a storage element or flip-flop is available to implement a
synchronous read. By placing this flip-flop, the shift register performance is improved by
decreasing the delay into the clock-to-out value of the flip-flop. However, an additional
clock latency is added. Any of the 16 bits can be read out asynchronously by varying the
LUT address. This is useful in making smaller shift registers (less than 16 bits.) For
example, when building an 8-bit shift register, simply set the addresses to the 8th bit.

SHIFTIN (D) ¥ SRLC16

r—_—————-—-———

m SHIFT-REG

|
|
A[3:0] : %ol A[4:1] D —kﬁ»Output Q)
| MC15— | D ql_» Registered
: WS DI Output
D(BY) H;‘ |—'—‘
| WSG

(optional)

CE (SR) ———|WE
CLK ~| CK

L !
¥ SHIFTOUT (Q15)

UG070_5_09_071504

Figure 5-9: Shift Register Configurations

192

www.Xxilinx.com Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

2:)(||_|NX® CLB Overview

Figure 5-10 is an equivalent representation of the shift register.

(BX Bl\;\; N 16-bit Shift Register
or
WE L SHIFT_OUT
(D)
CLK ——
[X X]

Address % MUX /

l UG070_5_10_030708

Figure 5-10: Representation of a Shift Register

An additional dedicated connection between shift registers allows connecting the last bit of
one shift register to the first bit of the next, without using the LUT D-output (see

Figure 5-11). Longer shift registers can be built with dynamic access to any bit in the chain.
The shift register chaining and the MUXF5, and MUXF6 multiplexers allow up to a 64-bit
shift register with addressable access to be implemented in one CLB.

Virtex-4 FPGA User Guide www.Xxilinx.com 193
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 5: Configurable Logic Blocks (CLBs)

SIXILINX®

1 Shift Chain |
in CLB SRLC16 is unavailable
in this slice |
DI bl = :
LUT |- :
I
|
DI DI- FE| | |
|
LUT |- I
SLICE S3 |
I
SRLC16 is unavailable |
in this slice |
DI DI FF |
I
LUT |- |
I
|
DI D|- FF :
LUT [~ |
SLICE St :
Y I
SHIFTIN I
|
DI D [FF I
SRLC16 |
MC15 P> I
|
I
|
DI pl- |FF |
SRLC16 S |
MC15 | I
SLICE S2 |
I
SHIFTOUT I
Y |
SHIFTIN I
|
DI D [FF [
SRLC16 L |
MC15 I
|
I
|
bl p FF I
SRLC16 S |
MC15 |~ I
SLICE SO |
I
l ouT CcLB |
CASCADABLE OUT _:
T T T T T T T T T T T T T T T T T oo romison
Figure 5-11: Cascadable Shift Register

194

www.Xxilinx.com

Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

2:)(||_|NX® CLB Overview

The block diagrams of the shift register (SRL16E) and the cascadable shift register
(SRLC16E) are illustrated in Figure 5-12. The pin descriptions of SRL16E and SRLC16E are
located in the “SRL Primitives and Submodules” section.

SRLC16E
D——» Q
Address —~4—»|
SRL16E
CE
CLK Q15
D —» Q
Address —4—»
CE SRLC16E
CLK
D Q
Address —4—»1
CE
CLK Q15

UG070_5_12_071504

Figure 5-12: Simplified Shift Register and Cascadable Shift Register

Shift Register Data Flow

Shift Operation

The shift operation is a single clock-edge operation, with an active High clock enable
feature. When enable is High, the input (D) is loaded into the first bit of the shift register,
and each bit is shifted to the next highest bit position. In a cascadable shift register
configuration (such as SRLC16), the last bit is shifted out on the Q15 output.

The bit selected by the 4-bit address appears on the Q output.

Dynamic Read Operation

The Q output is determined by the 4-bit address. Each time a new address is applied to the
4-input address pins, the new bit position value is available on the Q output after the time
delay to access the LUT. This operation is asynchronous and independent of the clock and
clock enable signals.

Static Read Operation

If the 4-bit address is fixed, the Q output always uses the same bit position. This mode
implements any shift-register length from one to 16 bits in one LUT. Shift register length is
(N+1) where N is the input address.

The Q output changes synchronously with each shift operation. The previous bit is shifted
to the next position and appears on the Q output.

Virtex-4 FPGA User Guide www.Xxilinx.com 195
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 5: Configurable Logic Blocks (CLBs) i:)("JNX®

Shift Register Summary

A shift operation requires one clock edge.

Dynamic-length read operations are asynchronous (Q output).

Static-length read operations are synchronous (Q output).

The data input has a setup-to-clock timing specification.

In a cascadable configuration, the Q15 output always contains the last bit value.

The Q15 output changes synchronously after each shift operation.

Multiplexers

Virtex-4 FPGA function generators and associated multiplexers can implement the
following:

4:1 multiplexer in one slice
8:1 multiplexer in two slices
16:1 multiplexer in one CLB element (4 slices)

32:1 multiplexer in two CLB elements (8 slices - 2 adjacent CLBs)

Wide input multiplexers are implemented in one level of logic (or LUT) and by dedicated
MUXEX. These multiplexers are fully combinatorial.

Each Virtex-4 FPGA slice has one MUXF5 multiplexer and one MUXFX multiplexer. The
MUXEX multiplexer implements the MUXF6, MUXF7, or MUXES, according to the slice
position in the CLB, as shown in Figure 5-13. Each CLB element has two MUXF6
multiplexers, one MUXF7 multiplexer and one MUXE8 multiplexer. MUXFX are designed
to allow LUT combinations of up to 16 LUTs in two adjacent CLBs. Any LUT can
implement a 2:1 multiplexer. Examples of multiplexers are shown in the Designing Large
Multiplexers section.

196

www.Xxilinx.com Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

XX"JNX@ CLB Overview

|
| |
I © I
I i | .
I G | MUXF8 combines
I SLICE 83 :' 1 the two MUXF7 outputs
I L | (Two CLBs)
! D .
| |
| |
| |
| |
I \| I
| © |
| o J I MUXF6 combines the two MUXF5
1 SLICE St :l I outputs from slices S1 and S3
I i |
: F J :
| |
| |
| |
| |
| |
| N |
| L |
| G J I MUXF7 combines the two MUXF6
| :l SLICE S2 : outputs from slices SO and S1
| L
| F J :
|
| |
| |
| |
I \I I
| © :
| a J | MUXF6 combines the two MUXF5
: :l SLICE SO | outputs from slices SO and S2
T
|

: F J |
| |
| CLB |
) D |

v ug070_5_13_071504

Figure 5-13: MUXF5 and MUXFX Multiplexers
Virtex-4 FPGA User Guide www.xilinx.com 197

UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 5: Configurable Logic Blocks (CLBs) 2:)(||_|NX®

Designing Large Multiplexers

4:1 Multiplexer

Each Virtex-4 FPGA slice has a MUXF5 to combine the outputs of the two LUTs and an
extra MUXFX. Figure 5-14 illustrates a valid combinatorial function with up to nine inputs
(or a 4:1 MUX) in one slice.

D MUXFX
F————o
1 |
4 I |
LUT 1 Reg 1
| |
L ———
OUT_F5
MUXF5 Fo-T o
|
|
4 LUT | Reg |
| |
L ———
S_F5
Any Slice
UG070_5_14_071504
Figure 5-14: LUTs and MUXF5 in a Slice
198 www.xilinx.com Virtex-4 FPGA User Guide

UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

SOXILINX®

CLB Overview

8:1 Multiplexer

Slice S0 and S1 have a MUXF6. MUXEF6 is designed to combine the outputs of two MUXF5
resources. Figure 5-15 illustrates a combinatorial function up to 18 inputs (or an 8:1 MUX)
in the slices SO and S2, or in the slices S1 and S3.

S_F5

Slice S2 (or S3)

OUT_F6

UG070_5_15_071504

D MUXFX
F—————
| |
4 |
LUT | Reg |
| |
L ———
MUXF5 P———==
|
|
4 LUT | Reg |
| |
L ———
S_F6
[MUXF6 ;’ T3
|
E LUT | Reg |
| |
e ——J
MUXF5 P———==
|
|
4 LUT | Reg |
| |
L ———
Slice SO (or S1)
Figure 5-15: LUTs and (MUXF5 and MUXF6) in Two Slices

16:1 Multiplexer

Slice 52 has a MUXF7. MUXF7 is designed to combine the outputs of two MUXF6.
Figure 5-16 illustrates a combinatorial function up to 35 inputs (or a 16:1 MUX) in a
Virtex-4 FPGA CLB.

Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

www.Xxilinx.com

199

http://www.xilinx.com

Chapter 5: Configurable Logic Blocks (CLBs) i:)("JNX®

Slice S3
D MUXF8
r——-—1
| |
2 LUT | Reg |
___4
MUXF5 ———1
4 | |
LUT | Reg |

S_F5
S_Fé =y Slice S1
J MUXF6 r———n1
4 | |
LUT | Reg |
1
MUXF5 ———4
4 | |
LUT | Reg |

S_F5
S_F7 N Slice S2
Jvuxer r——— OUT_F
4 | |
LUT | Reg |
1
j MUXF5| r==—=1
4 LUT | Reg |

S_F5
S-Fe N Slice S0
Umuxre - ——,
|
1 LUT | Reg |
1
j MUXF5 r———1
4 LUT | Reg |
___4
S_F5

UG070_5_16_071504

Figure 5-16: LUTs and (MUXF5, MUXF6, and MUXF7) in One CLB

200 www.Xxilinx.com Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

2:)(||_|NX® CLB Overview

32:1 Multiplexer

Slice S3 of each CLB has a MUXF8. Combinatorial functions of up to 68 inputs (or a 32:1
MUX) fit in two CLBs as shown in Figure 5-17. The outputs of two MUXF7 are combined
through dedicated routing resources between two adjacent CLBs in a column.

] MUXF8
Slice S3
] MUXF6
Slice S1
J MUXF7
Slice S2
] MUXF6
Slice SO
CLB

J MUXF8 OUT F8
Slice S3
] MUXF6
Slice S1
J MUXF7
Slice S2
] MUXF6
Slice SO CLB

UG070_5_17_071504

Figure 5-17: MUXF8 Combining Two Adjacent CLBs

Virtex-4 FPGA User Guide www.Xxilinx.com 201
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 5: Configurable Logic Blocks (CLBs) i:)("JNX®

DATA[2]

DATA[3]

DATA[4]

DATA[5]

DATA[6]

DATA[7]

Wide-Input Multiplexer Summary

Each LUT can implement a 2:1 multiplexer. In each slice, the MUXF5 and two LUTs can
implement a 4:1 multiplexer. The MUXF6 and two slices can implement a 8:1 multiplexer.
The MUXEF7? and the four slices of any CLB can implement a 16:1, and the MUXFS8 and two
CLBs can implement a 32:1 multiplexer. Figure 5-18 summarizes the implementation of a
wide-input multiplexer. The section “Multiplexer Verilog/VHDL Examples” has code for
the wide-input multiplexers.

: LUT

DATA[7:0] —b———ppe| &1

|
|
|
|
|
|
|
|
: |
| (S1 & S3) |
| |
! I
LT .
| |
| |
| |
| |
I :16:1 output
I F7
| |
| |
F————————————— = ——— = n | |
| 1 I |
| | I |
} | 8:1 Output | |
P Lot I I
] 1 I |
	I
	I
	I
< I I	
	1 8:1 [
! ! DATA[15:8] T—8 (50 & 52) :	
P Lot ' [
1 I	
	¢
	i
e Y ___ I | SO —_— e —— — —— — —— ——] I | CLB
SELECT[0] —

SELECTI[1] SELECT[2:0] —
SELECT[2] SELECT[3]
8:1 MUX 16:1 MUX
UG070_5_18_071504
Figure 5-18: 8:1 and 16:1 Multiplexers
Fast Lookahead Carry Logic
Dedicated carry logic provides fast arithmetic addition and subtraction. The Virtex-4
FPGA CLB has two separate carry chains, as shown in the Figure 5-19.
202 www.xilinx.com Virtex-4 FPGA User Guide

UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

SOXILINX®

CLB Overview

(First Carry Chain)

The height of the carry chains is two bits per slice. The carry chain in the Virtex-4 device is
running upward. The dedicated carry path and carry multiplexer (MUXCY) can also be
used to cascade function generators for implementing wide logic functions.

couTt

A to SO of the next CLB

l—/ELl\MUXCY —
LUT —) FRL-
>
D—
SLICE S2
O |\ MUXCY
LUT —)LFF—»
>
D—
CIN
cout
0 MUgF
y FF
LUT .
="
D—
WO_F_I\ MUXCY SLICE SO
\ FF]
LuUT _ ;ﬁ
> |
D—

LUT
— > |
‘_/O_L\ MUXCY ——
LUT y—) L
— > |
CIN
couTt
& T\ MUXCY ——
LUT) FFL.
— > |
‘—/o_[[\ MUXCY
LUT [y—|)4[L
— > |

Figure 5-19: Fast Carry Logic Path

(Second Carry Chain)

SLICE S3

SLICE St

ug070_5_19_071504

Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

www.Xxilinx.com

203

http://www.xilinx.com

Chapter 5: Configurable Logic Blocks (CLBs) i:)("JNX®

Arithmetic Logic

The arithmetic logic includes an XOR gate that allows a 2-bit full adder to be implemented
within a slice. In addition, a dedicated AND (FAND or GAND) gate (shown in Figure 5-2)
improves the efficiency of multiplier implementation.

CLB / Slice Timing Models

Due to the large size and complexity of Virtex-4 FPGAs, understanding the timing
associated with the various paths and functional elements has become a difficult and
important task. Although it is not necessary to understand the various timing parameters
to implement most designs using Xilinx software, a thorough timing model can assist
advanced users in analyzing critical paths or planning speed-sensitive designs.

Three timing model sections are described.

¢ Functional element diagram - basic architectural schematic illustrating pins and
connections.

¢ Timing parameters - definitions of Virtex-4 Data Sheet timing parameters.

e Timing Diagram - illustrates functional element timing parameters relative to each
other.

Use the models in this chapter in conjunction with both the Xilinx Timing Analyzer
software (TRCE) and the section on switching characteristics in the Virtex-4 Data Sheet. All
pin names, parameter names, and paths are consistent with the post-route timing and pre-
route static timing reports. Most of the timing parameters found in the section on
switching characteristics are described in this chapter.

All timing parameters reported in the Virtex-4 Data Sheet are associated with slices and
configurable logic blocks (CLBs). The following sections correspond to specific switching
characteristics sections in the Virtex-4 Data Sheet:

e “General Slice Timing Model and Parameters” (CLB Switching Characteristics)

e “Slice Distributed RAM Timing Model and Parameters (Available in SLICEM only)”
(CLB Distributed RAM Switching Characteristics)

e “Slice SRL Timing Model and Parameters (Available in SLICEM only)” (CLB SRL
Switching Characteristics)

e “Slice Carry-Chain Timing Model and Parameters” (CLB Application Switching
Characteristics)

204

www.Xxilinx.com Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

SOXILINX®

CLB / Slice Timing Models

General Slice Timing Model and Parameters

A simplified Virtex-4 FPGA slice is shown in Figure 5-20. Some elements of the Virtex-4
FPGA slice are omitted for clarity. Only the elements relevant to the timing paths described
in this section are shown.

— FX
FXINA > MUXFX
FXINB > —Sv
LT !] :|— b al—>va
- FF/LAT
G| —— D CE
inputs | C>——
= CLK
SR REV
e
BY >
> F5
:DﬂXFS
— X
LUT _P
. D_D— D Y _D— D Q — xQ
inputs | C>——— FF/LAT
o —CE
— CLK
SR REV
|
BX >
CE=>
CLK=>
SR> UG070_5_20_071504

Figure 5-20: Simplified Virtex-4 FPGA General SLICEL/SLICEM

Timing Parameters

Table 5-5 shows the general slice timing parameters for a majority of the paths in
Figure 5-20.

Table 5-5: General Slice Timing Parameters

Parameter Function Description

Combinatorial Delays

Tno F/G inputs to X/Y outputs | Propagation delay from the F/G inputs of the slice, through the look-
up tables (LUTs), to the X/Y outputs of the slice.

Tigs F/G inputs to F5 output Propagation delay from the F/G inputs of the slice, through the LUTs
and MUXEFS5 to the F5 output of the slice.

Tirsx F/Ginputs to XMUX output | Propagation delay from the F/G inputs of the slice, through the LUTs
and MUXFS5 to the XMUX output of the slice.

Virtex-4 FPGA User Guide 205

UGO070 (v2.6) December 1, 2008

www.Xxilinx.com

http://www.xilinx.com

Chapter 5: Configurable Logic Blocks (CLBs)

SIXILINX®

Table 5-5: General Slice Timing Parameters (Continued)

Parameter Function Description
Tirey Fxina/Fxing inputs to Propagation delay from the Fyyna /Fxng inputs, through FeMUX to
YMUX output the YMUX output of the slice.
Tinarx/ Tineex | Fxina/Fxing inputs to FX Propagation delay from the Fyyna /Fxng inputs, through FEMUX to

output

the FX output of the slice.

Sequential Delays

Tcxo FF Clock (CLK) to XQ/YQ | Time after the clock that data is stable at the XQ/YQ outputs of the
outputs slice sequential elements (configured as a flip-flop).

Tekro Latch Clock (CLK) to Time after the clock that data is stable at the XQ/YQ outputs of the
XQ/YQ outputs slice sequential elements (configured as a latch).

Setup and Hold for Slice Sequential Elements

Tyxck = Setup time (before clock edge)

Texx = Hold time (after clock edge)

Tpoick/ Tekpr BX/BY Inputs Time before Clock (CLK) that data from the BX or BY inputs of the
slice must be stable at the D-input of the slice sequential elements
(configured as a flip-flop).

Texcx/ Toxrx Fxina/Fxing Input Time before Clock (CLK) that data from the Fyja or Fxpng inputs of
the slice must be stable at the D-input of the slice sequential elements
(configured as a flip-flop).

Teeck/ Tekcr CE input Time before Clock (CLK) that the CE (Clock Enable) input of the slice
must be stable at the CE-input of the slice sequential elements
(configured as a flip-flop).

Tsrek/ Teksr SR/BY inputs Time before Clock (CLK) that the SR (Set/Reset) and the BY (Rev)
inputs of the slice must be stable at the SR/Rev-inputs of the slice
sequential elements (configured as a flip-flop). Synchronous
set/reset only.

Set/Reset

TRPW Minimum Pulse Width for the SR (Set/Reset) and BY (Rev) pins.

TRQ Propagation delay for an asynchronous Set/Reset of the slice
sequential elements. From SR/BY inputs to XQ/YQ outputs.

FTOG Toggle Frequency - Maximum Frequency that a CLB flip-flop can be
clocked: 1/(TCH+TCL).

206 www.xilinx.com Virtex-4 FPGA User Guide

UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

2:)(||_|NX® CLB / Slice Timing Models

Timing Characteristics

Figure 5-21 illustrates the general timing characteristics of a Virtex-4 FPGA slice.

— l—Teeck

|

L L

CE : | |

— :<—TDICK/T FXCK :

DIFX Y7 | |

(DATA) | | |
| | — |<—TSRCK

SR | | |

(RESET) } } [

—| |=—Tcko | — l~—Tcko
| |
| |

YQ |

Figure 5-21: General Slice Timing Characteristics

UG070_5_21_080204

e Attime Tk before clock event (1), the clock-enable signal becomes valid-High at
the CE input of the slice register.

e Attime Tpjck or Trxcx before clock event (1), data from either BX, BY, FXINA or
FXINB inputs become valid-High at the D input of the slice register and is reflected on
either the XQ or YQ pin at time Tk after clock event (1).

o Attime Tgrck before clock event (3), the SR signal (configured as synchronous reset in
this case) becomes valid-High, resetting the slice register. This is reflected on the XQ
or YQ pin at time Tk after clock event (3).

Virtex-4 FPGA User Guide www.Xxilinx.com 207
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 5: Configurable Logic Blocks (CLBs) 2:)(||_|NX®

Slice Distributed RAM Timing Model and Parameters
(Available in SLICEM only)
Figure 5-22 illustrates the details of distributed RAM implemented in a Virtex-4 FPGA

slice. Some elements of the Virtex-4 FPGA slice are omitted for clarity. Only the elements
relevant to the timing paths described in this section are shown.

couTt
MUXFX
FXINA > \|
FXINB > | J =
! YMUX
ADDRESS :)D_
RAM
G4 >—
G3I[>— D —Y
G2 >——
Gi>—
ws |DI
BY > D
DATA_IN or
Address
SLICEWE[1:0] WSGEN
o
WE
— K MUXF5
= [>F5
1l) ’
WS |DI MUX
\
ADDRESS RAM ’_)D—
Fa>
F3[> DI—e —=>X
FPC>
Fi—>
BX >
DATA_IN or
Address
CLK >
SR——
(Write Enable) UG070_5_22_071504
Figure 5-22: Simplified Virtex-4 FPGA SLICEM Distributed RAM
208 www.Xxilinx.com Virtex-4 FPGA User Guide

UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

2:)(||_|NX® CLB / Slice Timing Models

Distributed RAM Timing Parameters

Table 5-6 shows the timing parameters for the distributed RAM in SLICEM for a majority
of the paths in Figure 5-22.

Table 5-6: Distributed RAM Timing Parameters

Parameter Function Description

Sequential Delays for Slice LUT Configured as RAM (Distributed RAM)

Tsucko CLKto X Time after the Clock (CLK) of a Write operation that the data written to the
distributed RAM is stable on the X output of the slice.
TsHckOEs CLK to F5 output (WE Time after the Clock (CLK) of a Write operation that the data written to the
active) distributed RAM is stable on the F5 output of the slice.

Setup and Hold for Slice LUT Configured as RAM (Distributed RAM)

T,s = Setup time (before clock edge) The following descriptions are for setup times only.
T, = Hold time (after clock edge)

Tps/Tpy BX/BY configured as data | Time before the clock that data must be stable at the BX/BY input of the

input (DI) slice.
Tas/Tan F/G Address inputs Time before the clock that address signals must be stable at the F/G inputs
of the slice LUT (configured as RAM).
Tws/Twa | WE input (SR) Time before the clock that the write enable signal must be stable at the WE
input of the slice LUT (configured as RAM).
Clock CLK
Twc Minimum clock period to meet address write cycle time.
Distributed RAM Timing Characteristics
The timing characteristics of a 16-bit distributed RAM implemented in a Virtex-4 FPGA
slice (LUT configured as RAM) are shown in Figure 5-23.
1 2 3 4 5 6 7
e Twe—= ! ! ! | !
ITWPHI | | | | | |
" Twell | | | | |
A X S S S S\
N N N N S
ADDR o2 FXI 3 Xi 4 XI 5 IX E X
| | | |
—»: k= Tos/Tevek | | | | |
o X X x] X o XT v X! o X x I X!
. L—Tws I I i i i I
| | TiLo |
WE | | N\ .
| | | | / |
DATA_OUT ; } } } !
XXMUX ___| MEMPA) X _ 0 1 X 1 1 X _ 0o I XMEME)
I WRITE | READ | WRITE | WRITE | WRITE | READ |
UGO070_5_23_080204
Figure 5-23: Slice Distributed RAM Timing Characteristics
Virtex-4 FPGA User Guide www.xilinx.com 209

UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 5: Configurable Logic Blocks (CLBs) i:)("JNX®

Clock Event 1: Write Operation

During a Write operation, the contents of the memory at the address on the ADDR inputs
are changed. The data written to this memory location is reflected on the X/Y outputs
synchronously.

e At time Tyg before clock event 1, the write-enable signal (WE) becomes valid-High,
enabling the RAM for the following Write operation.

e Attime Tpgbefore clock event 1, the address (2) becomes valid at the F/G inputs of
the RAM.

e Attime Tpgor Teyck before clock event 1, the DATA becomes valid (1) at the DI input
of the RAM and is reflected on the X/XMUX output at time Tgycko after clock
event 1.

This is also applicable to the XMUX, YMUX, XB, YB, Coyy, and F5 outputs at time Tywogco,
Twosx, TWOSXB/ TWOSYB’ and TSHCKOFS after clock event 1.

Clock Event 2: Read Operation

All Read operations are asynchronous in distributed RAM. As long as WE is Low, the
address bus can be asserted at any time. The contents of the RAM on the address bus are
reflected on the X/Y outputs after a delay of length Ty; o (propagation delay through a
LUT). The address (F) is asserted after clock event 2, and the contents of the RAM at
address (F) are reflected on the output after a delay of length Ty; .

210

www.Xxilinx.com Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

2:)(||_|NX® CLB / Slice Timing Models

Slice SRL Timing Model and Parameters (Available in SLICEM only)

Figure 5-24 illustrates shift register implementation in a Virtex-4 FPGA slice. Some
elements of the Virtex-4 FPGA slice have been omitted for clarity. Only the elements
relevant to the timing paths described in this section are shown.

Shift_In couT
MUXFX
FXINA > \|
[>FX
FXINB >)
—>vY
ADDRESS
a3 > SRL =8
G2 > D \D;D—D YMUX
Gl >)
Go—> MC15
WS DI
BY
(DATA_IN or
ADDRESS)
WSGEN
WE
— CK
MUXF5
— Shift_In
1) =
ws |DI A 1 —>Xx
ADDRESS . AD_D YMUX
F3 > SRL »—)D
P> Df—*
F1 >
Fo > MC15 [—> XB
SR[>—
CLK [>——
BX >
(DATA_IN or
ADDRESS) U 0
Shift_Out CIN UG070_5_24_071504
Figure 5-24: Simplified Virtex-4 FPGA Slice SRL
Virtex-4 FPGA User Guide www.Xxilinx.com 211

UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 5: Configurable Logic Blocks (CLBs) 2:)(||_|NX®

Slice SRL Timing Parameters

Table 5-7 shows the SLICEM SRL timing parameters for a majority of the paths in
Figure 5-24.

Table 5-7: Slice SRL Timing Parameters

Parameter Function Description

Sequential Delays for Slice LUT Configured as SRL (Select Shift Register)

TreG CLK to X/Y outputs Time after the Clock (CLK) of a Write operation that the data written to
the SRL is stable on the X/Y outputs of the slice.

Teksu CLK to Shift_out Time after the Clock (CLK) of a Write operation that the data written to
the SRL is stable on the Shift_out or XB/YB outputs of the slice.

TREGFS CLK to F5 output Time after the Clock (CLK) of a Write operation that the data written to
the SRL is stable on the F5 output of the slice.

TreGXB/ CLK to XB/YB outputs Time after the Clock (CLK) of a Write operation that the data written to

TREGYB the SRL is stable on the XB/YB outputs of the slice.

Setup/Hold Times for Slice LUT Configured as SRL (Select Shift Register)

Tyxs = Setup time (before clock edge) The following descriptions are for setup times only.

T,xu= Hold time (after clock edge)

Tws/ CE input (WE) Time before the clock that the write enable signal must be stable at the
Twu WE input of the slice LUT (configured as SRL).

Tps/ BX/BY configured as data Time before the clock that the data must be stable at the BX/BY input
Tpu input (DI) of the slice.

Slice SRL Timing Characteristics

Figure 5-25 illustrates the timing characteristics of a 16-bit shift register implemented in a
Virtex-4 FPGA slice (LUT configured as SRL).

| 1 | | | |
CLK : A I I I I
(SR)—_CI(L—TDS :\ :\ | :\ :
Shift_in (DI) i o X i \\1 X i \\1)gi o X i \\1)Qi 0
Address : 0 : \ : \K : \ 2 : \ :1\
—! lTReg | l ' l iT|LoI l ' l TILOX ' l 16
Data Out @) _ x| X o [X 1 XKoo X 1 X KXo X |
TrRegxs— k— ' ' ' I :
msBmc1s) x| X x :X X :X X :X x 1 X x 1 Xx :b@

UG070_5_25_080204

Figure 5-25: Slice SRL Timing Characteristics

212 www.xilinx.com Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

SOXILINX®

CLB / Slice Timing Models

Clock Event 1: Shift_In

During a Write (Shift_In) operation, the single-bit content of the register at the address on
the ADDR inputs is changed, as data is shifted through the SRL. The data written to this
register is reflected on the X/Y outputs synchronously, if the address is unchanged during
the clock event. If the ADDR inputs are changed during a clock event, the value of the data
at the addressable output (D) is invalid.

e At time Tyygg before clock event 1, the write-enable signal (SR) becomes valid-High,
enabling the SRL for the Write operation that follows.

e At time Tpg before clock event 1 the data becomes valid (0) at the DI input of the SRL
and is reflected on the X/Y output after a delay of length Trg after clock event 1.
Since the address 0 is specified at clock event 1, the data on the DI input is reflected at
the D output, because it is written to register 0.

Clock Event 2: Shift_In

e At time Tpg before clock event 2, the data becomes valid (1) at the DI input of the SRL
and is reflected on the X/Y output after a delay of length Trgg after clock event 2.
Since the address 0 is still specified at clock event 2, the data on the DI input is
reflected at the D output, because it is written to register 0.

Clock Event 3: Shift_In/Addressable (Asynchronous) READ

All Read operations are asynchronous to the CLK signal. If the address is changed
(between clock events), the contents of the register at that address are reflected at the
addressable output (X/Y outputs) after a delay of length Ty; (propagation delay through
a LUT).

e At time Tpg before clock event 3 the data becomes valid (1) at the DI input of the SRL,
and is reflected on the X/Y output Tgrgg time after clock event 3.

e The address is changed (from 0 to 2) some time after clock event 3. The value stored in
register 2 at this time is a 0 (in this example, this was the first data shifted in), and it is
reflected on the X/Y output after a delay of length Ty .

Clock Event 16: MSB (Most Significant Bit) Changes

At time Tregxp after clock event 16, the first bit shifted into the SRL becomes valid (logical
0 in this case) on the XB output of the slice via the MC15 output of the LUT (SRL). This is
also applicable for the XMUX, YMUX, XB, YB, Coyt, and F5 outputs at time Twogco,
TWOSX’ TWOSXB/ and TWOSYB after clock event 16.

Slice Carry-Chain Timing Model and Parameters

Figure 5-26 illustrates a carry-chain in a Virtex-4 FPGA slice. Some elements of the Virtex-4
FPGA slice have been omitted for clarity. Only the elements relevant to the timing paths
described in this section are shown.

Virtex-4 FPGA User Guide www.Xxilinx.com 213
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 5: Configurable Logic Blocks (CLBs) i:)("JNX®

Cout
CYMUXG
FXINA \I MUXFX
— FX
FXINB > |
—)D]—D YMUX
Y
LUT I— D Q—TL=>YQ
] FF/LAT
. tG = D CE
inputs | >
— CLK
SR REV
e
BY >
GAND
CYMUXE MUXFﬂ —F5
—
| — X
LUT
FlE> D) .Jl | > XMUX
inputs | —> 7
I _:|— D Q > xQ
FF/LAT
—]CE
— CLK
__D— SR REV
FAND /—\ |
BX[>
CE—>
CLK=>
SR

0

CIN ug070_5_26_071504

Figure 5-26: Simplified Virtex-4 FPGA Slice Carry-Chain Diagram

214 www.xilinx.com Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

SOXILINX®

CLB / Slice Timing Models

Slice Carry-Chain Timing Parameters

Table 5-8 shows the slice carry-chain timing parameters for a majority of the paths in
Figure 5-26.

Table 5-8: Slice Carry-Chain Timing Parameters

Parameter Function Description

Sequential Delays for Slice LUT Configured as Carry Chain

Texcy/ BX/BY input to Coyr Propagation delay from the BX/BY inputs of the slice, to Coyt output of the
Teycy output slice.

Tgyp Cry input to Coyr output | Propagation delay from the Cyyy input of the slice, to Coyr output of the slice.
Teanpcy/ | F/G input to Coyp output | Propagation delay from the F/G inputs of the slice, to Coyt output of the
TaNDCY slice using FAND (product).

Topcyr/ F/G input to Coyr output | Propagation delay from the F/G input of the slice to Coy output of the slice.
Torcya

Topx/ F/G input to Propagation delay from the F/G inputs of the slice, to XMUX/YMUX output
Topy XMUX/YMUX output of the slice using XOR (sum).

Setup/Hold Times for Slice LUT Configured as Carry Chain

Tyxs = Setup time (before clock edge)
T, = Hold time (after clock edge)

The following descriptions are for setup times only.

Temek/
Teken

Crn Data inputs (DI) Time before Clock (CLK) that data from the Cyy input of the slice must be
stable at the D-input of the slice sequential elements (configured as a flip-

flop). Figure 5-27 shows the worst-case path.

Slice Carry-Chain Timing Characteristics

Figure 5-27 illustrates the timing characteristics of a slice carry chain implemented in a
Virtex-4 FPGA slice.

-
N

| | |
— —Tcinek | |
| } t
CiN
ol A | | |
| | —| | =—TRck
SR | |)’I I\
(RESET) T T |
—>I I<—TCKO | —>| I<—TCKO
YQ |
|

_:/ | L
| | |
ug070_5_27_080204

Figure 5-27: Slice Carry-Chain Timing Characteristics

(OUT)

At time Tepyck before clock event 1, data from Cryy input becomes valid-High at the D
input of the slice register. This is reflected on either the XQ or YQ pin at time Tcxo
after clock event 1.

Virtex-4 FPGA User Guide

www.Xxilinx.com 215

UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 5: Configurable Logic Blocks (CLBs) 2:)(||_|NX®

e At time Tgrck before clock event 3, the SR signal (configured as synchronous reset in
this case) becomes valid-High, resetting the slice register. This is reflected on either the
XQ or YQ pin at time Tk after clock event 3.

CLB Primitives and Verilog/VHDL Examples

Distributed RAM Primitives

Four primitives are available; from 16 x 1-bit to 64 x 1-bit. Three primitives are single-port
RAM, and one primitive is a dual-port RAM, as shown in Table 5-9.

Table 5-9: Single-Port and Dual-Port Distributed RAM

Primitive RAM Size Type Address Inputs
RAM16X1S 16 bits single-port A3, A2, A1, AO
RAM32X1S 32 bits single-port A4, A3, A2, A1, AO
RAM64X1S 64 bits single-port A5, A4, A3, A2, A1, A0
RAM16X1D 16 bits dual-port A3, A2, A1, A0

The input and output data are 1-bit wide. However, several distributed RAMs can be used
to implement wide memory blocks.

Figure 5-28 shows generic single-port and dual-port distributed RAM primitives. The A
and DPRA signals are address busses.

RAM#X1S RAM16X1D
D — D —
WE — — © WE — — SPO
WCLK — WCLK —
R/W Port
A[#:0] =< A[#:0] =<
1 C
— DPO
DPRA[#:0] =<
Read Port

ug070_5_28_071504

Figure 5-28: Single-Port and Dual-Port Distributed RAM Primitive

As shown in Table 5-10, wider primitives are available for 2-bit, 4-bit, and 8-bit RAM.

Table 5-10: Wider Primitives

Primitive RAM Size Data Inputs Address Inputs Data Outputs
RAM16X2S 16 x 2-bit D1, DO A3, A2, Al, A0 01, 00
RAM32X2S | 32 x 2-bit D1, DO A4, A3, A2, A1, A0 01, 00
RAM16X4S 16 x 4-bit D3, D2, D1, DO A3, A2, A1, A0 03,02, 01, 00
216 www.xilinx.com Virtex-4 FPGA User Guide

UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

2:)(||_|NX® CLB Primitives and Verilog/VHDL Examples

VHDL and Verilog Instantiations

VHDL and Verilog instantiation templates are available as examples (see VHDL and
Verilog Templates).

In VHDL, each template has a component declaration section and an architecture section.
Each part of the template should be inserted within the VHDL design file. The port map of
the architecture section should include the design signal names.

The RAM_#S templates (with # = 16, 32, 64) are single-port modules and instantiate the
corresponding RAM#X1S primitive.

RAM_16D templates are dual-port modules and instantiate the corresponding
RAM16X1D primitive.

Port Signals

Each distributed RAM port operates independently of the other while reading the same set
of memory cells.

Clock - WCLK

The clock is used for the synchronous write. The data and the address input pins have
setup time referenced to the WCLK pin.

Enable - WE

The enable pin affects the write functionality of the port. An inactive Write Enable prevents
any writing to memory cells. An active Write Enable causes the clock edge to write the data
input signal to the memory location pointed to by the address inputs.

Address - A0, A1, A2, A3 (A4, A5)

The address inputs select the memory cells for read or write. The width of the port
determines the required address inputs. Note that the address inputs are not a bus in
VHDL or Verilog instantiations.

Dataln-D

The data input provides the new data value to be written into the RAM.

Data Out - O, SPO, and DPO

The data out O (Single-Port or SPO) and DPO (Dual-Port) reflects the contents of the
memory cells referenced by the address inputs. Following an active write clock edge, the
data out (O or SPO) reflects the newly written data.

Inverting Control Pins

The two control pins (WCLK and WE) each have an individual inversion option. Any
control signal, including the clock, can be active at 0 (negative edge for the clock) or at 1
(positive edge for the clock) without requiring other logic resources.

Global Set/Reset - GSR

The global set/reset (GSR) signal does not affect distributed RAM modules. For more
information on the GSR, see the BUFGSR section in the Xilinx Software Manual.

Virtex-4 FPGA User Guide www.Xxilinx.com 217
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 5: Configurable Logic Blocks (CLBs) i:)("JNX®

Attributes

Content Initialization - INIT

With the INIT attributes, users can define the initial memory contents after configuration.
By default distributed RAM is initialized with all zeros during the device configuration
sequence. The initialization attribute INIT represents the specified memory contents. Each
INIT is a hex-encoded bit vector. Table 5-11 shows the length of the INIT attribute for each
primitive.

Table 5-11: INIT Attributes Length

Primitive Template INIT Attribute Length
RAM16X1S RAM_16S 4 digits
RAM32X1S RAM_32S 8 digits
RAM64X1S RAM_64S 16 digits
RAM16X1D RAM_16S 4 digits

Initialization in VHDL or Verilog Codes

Distributed RAM structures can be initialized in VHDL or Verilog code for both synthesis
and simulation. For synthesis, the attributes are attached to the distributed RAM
instantiation and are copied in the EDIF output file to be compiled by Xilinx Alliance Series
tools. The VHDL code simulation uses a generic parameter to pass the attributes. The
Verilog code simulation uses a defparam parameter to pass the attributes.

The distributed RAM instantiation templates (in VHDL and Verilog) illustrate these
techniques (“VHDL and Verilog Templates”).

Location Constraints

The CLB has four slices S0, 51, 52 and S3. As an example, in the bottom left CLB, the slices
have the coordinates shown in Figure 5-1.

Distributed RAM instances can have LOC properties attached to them to constrain
placement. The RAM16X1S primitive fits in any LUT of slices SO or S2.

For example, the instance U_RAM16 is placed in slice X0Y0 with the following LOC
properties:

INST "U_RAM16" LOC = "SLICE_XO0YO";

Distributed RAM placement locations use the slice location naming convention, allowing
LOC properties to transfer easily from array to array.

218 www.Xxilinx.com Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

2:)(||_|NX® CLB Primitives and Verilog/VHDL Examples

Creating Larger RAM Structures

Wider and/or deeper memory structures can be created using multiple distributed RAM
instances. Table 5-12 shows the generic VHDL and Verilog distributed RAM examples
provided to implement n-bit-wide memories.

Table 5-12: VHDL and Verilog Submodules

Submodules Primitive Size Type
XC4V_RAMI16XN_S RAM16X1S 16 words x n-bit single-port
XC4V_RAM32XN_S RAM32X1S 32 words x n-bit single-port
XC4V_RAM64XN_S RAM64X1S 64 words x n-bit single-port
XC4V_RAM16XN_D RAM16X1D 16 words x n-bit dual-port

By using the read /write port for the write address and the second read port for the read
address, a FIFO that can read and write simultaneously is easily generated. Simultaneous
access doubles the effective throughput of the memory.

VHDL and Verilog Templates

VHDL and Verilog templates are available for all single-port and dual-port primitives. The
number in each template indicates the number of bits (for example, RAM_16S is the
template for the 16 x 1-bit RAM); S indicates single-port, and D indicates dual-port.

In VHDL, each template has a component declaration section and an architecture section.
Each part of the template should be inserted within the VHDL design file. The port map of
the architecture section should include the design signal names.

The single-port templates are:

e RAM_165
e RAM_325
e RAM_64S

The dual-port templates are:
e RAM 16D
Templates for the RAM_16S module are provided in VHDL and Verilog code as examples.

VHDL Template

-- Module: RAM_16S

-- Description: VHDL instantiation template

- Distributed RAM

-— Single Port 16 x 1

-- can be used also for RAM16X1S_1

-- Device: Virtex-4 Family

-- Components Declarations:

Virtex-4 FPGA User Guide www.Xxilinx.com 219
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 5: Configurable Logic Blocks (CLBs)

SIXILINX®

component RAM16X1S

generic (
INIT bit_
)
port (

D in
WE in
WCLK in
A0 in
Al in
A2 in
A3 in
(0]

)

end component;

vector := X"0000"

std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;

out std_logic

-- Architecture section:

-- Attributes for
attribute INIT:

attribute INIT of

RAM initialization ("0" by default):

string;

U_RAM16X1S: label is "0000";

-- Distributed RAM Instantiation
U_RAM16X1S: RAM16X1S

port map (
D = , --
WE =, --
WCLK = , --
A0 = , --
Al = , --
A2 = , --
A3 =, --
0 => -=

Verilog Template

input signal

Write Enable signal
Write Clock signal
Address 0 signal
Address 1 signal
Address 2 signal
Address 3 signal
output signal

insert
insert
insert
insert
insert
insert
insert
insert

//

// Module: RAM 16S

//

// Description: Verilog instantiation template
// Distributed RAM

// Single Port 16 x 1

// can be used also for RAM16X1S_1
//

// Device: Virtex-4 Family

//

[m e
//Distributed RAM Instantiation

RAM16X1S U_RAMlGXlS (

// insert input signal
// insert Write Enable signal
// insert Write Clock signal
// insert Address 0 signal
// insert Address 1 signal

D(),
E(),

LK(),
00),
1()

’

220

Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

www.Xxilinx.com

http://www.xilinx.com

2:)(||_|NX® Shift Registers (SRLs) Primitives and Verilog/VHDL Example

A2(), // insert Address 2 signal
LA3(), // insert Address 3 signal
L.O() // insert output signal

Shift Registers (SRLs) Primitives and Verilog/VHDL Example

This section provides generic VHDL and Verilog submodules and reference code examples
for implementing from 16-bit up to 64-bit shift registers. These submodules are built from
16-bit shift-register primitives and from dedicated MUXF5, MUXF6, MUXF7, and MUXFS8
multiplexers.

SRL Primitives and Submodules

Eight primitives are available that offer optional clock enable (CE), inverted clock (CLK)
and cascadable output (Q15) combinations.

Table 5-13 lists all of the available primitives for synthesis and simulation.

Table 5-13: Shift Register Primitives

Primitive Length Control Address Inputs Output
SRL16 16 bits CLK A3,A2,A1,A0 Q
SRL16E 16 bits CLK, CE A3,A2,A1,A0 Q
SRL16_1 16 bits CLK A3,A2,A1,A0 Q
SRL16E_1 16 bits CLK, CE A3,A2,A1,A0 Q
SRLC16 16 bits CLK A3,A2,A1,A0 Q, Q15
SRLC16E 16 bits CLK, CE A3,A2,A1,A0 Q, Q15
SRLC16_1 16 bits CLK A3,A2,A1,A0 Q, Q15
SRLC16E_1 16 bits CLK, CE A3,A2,A1,A0 Q, Q15

In addition to the 16-bit primitives, 32-bit and 64-bit cascadable shift registers can be
implemented in VHDL and Verilog. Table 5-14 lists the available submodules.

Table 5-14: Shift Register Submodules

Submodule Length | Control Address Inputs Output
SRLC32E_MACRO 32bits | CLK, CE A4,A3,A2,A1,A0 Q, Q31
SRLC64E_MACRO 64 bits | CLK, CE A5, A4, A3,A2,A1,A0 Q, Q63

The submodules are based on SRLC16E primitives and are associated with dedicated
multiplexers (MUXF5, MUXF6, and so forth). This implementation allows a fast static- and
dynamic-length mode, even for very large shift registers.

Figure 5-29 represents the cascadable shift registers (32-bit and 64-bit) implemented by the
submodules in Table 5-14.

Virtex-4 FPGA User Guide www.Xxilinx.com 221
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 5: Configurable Logic Blocks (CLBs)

SIXILINX®

Add.

A4
Add. —8
A3, A2, A1, AO
D Q D
4 A[3:0]
CE
Qts
SRLC16E
Q
MUXF5
D Q
4
A[3:0]
CE
Qis Q31
SRLC16E

32-bit Shift Register

MUXF6

Q63

A5, Ad A5
A3, A2, A1, AO Ad
D Q
4 A[3:0]
CE
> Qis
SRLC16E 1
MUXF5
D Q
4 A[3:0]
CE
> Q15
SRLC16E
D Q
= PR
CE
> Qis
SRLC16E
MUXF5
D Q
4 A[3:0]
CE
> Qis
SRLC16E

64-bit Shift Register
Figure 5-29: Shift-Register Submodules (32-bit, 64-bit)

UG070_5_29_071504

All clock enable (CE) and clock (CLK) inputs are connected to one global clock enable and
one clock signal per submodule. If a global static- or dynamic-length mode is not required,
the SRLC16E primitive can be cascaded without multiplexers.

222

www.Xxilinx.com

Virtex-4 FPGA User Guide

UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

2:)(||_|NX® Shift Registers (SRLs) Primitives and Verilog/VHDL Example

Initialization in VHDL or Verilog Code

A shift register can be initialized in VHDL or Verilog code for both synthesis and
simulation. For synthesis, the attribute is attached to the 16-bit shift register instantiation
and is copied in the EDIF output file to be compiled by Xilinx Alliance Series tools. The
VHDL code simulation uses a generic parameter to pass the attributes. The Verilog code
simulation uses a defparam parameter to pass the attributes.

The Virtex-4_SRL16E shift register instantiation code examples (in VHDL and Verilog)
illustrate these techniques (“VHDL and Verilog Templates”). Virtex-4_SRL16E.vhd
and Virtex-4_SRL16E.v files are not a part of the documentation.

Port Signals
Clock - CLK

Either the rising edge or the falling edge of the clock is used for the synchronous shift
operation. The data and clock enable input pins have setup times referenced to the chosen
edge of CLK.

Dataln-D

The data input provides new data (one bit) to be shifted into the shift register.

Clock Enable - CE (optional)

The clock enable pin affects shift functionality. An inactive clock enable pin does not shift
data into the shift register and does not write new data. Activating the clock enable allows
the data in (D) to be written to the first location and all data to be shifted by one location.

When available, new data appears on output pins (Q) and the cascadable output pin (Q15).

Address - A0, A1, A2, A3

Address inputs select the bit (range 0 to 15) to be read. The nth bit is available on the output
pin (Q). Address inputs have no effect on the cascadable output pin (Q15); it is always the
last bit of the shift register (bit 15).

Data Out - Q

The data output Q provides the data value (1 bit) selected by the address inputs.

Data Out - Q15 (optional)

The data output Q15 provides the last bit value of the 16-bit shift register. New data
becomes available after each shift-in operation.

Inverting Control Pins

The two control pins (CLK, CE) have an individual inversion option. The default is the
rising clock edge and active High clock enable.

Global Set/Reset - GSR

The global set/reset (GSR) signal has no impact on shift registers.

Virtex-4 FPGA User Guide www.Xxilinx.com 223
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 5: Configurable Logic Blocks (CLBs) 2:)(||_|NX®

Attributes

Content Initialization - INIT

The INIT attribute defines the initial shift register contents. The INIT attribute is a hex-
encoded bit vector with four digits (0000).The left-most hexadecimal digit is the most
significant bit. By default the shift register is initialized with all zeros during the device
configuration sequence, but any other configuration value can be specified.

Location Constraints

Each CLB resource has four slices: S0, S1, S2, and S3. As an example, in the bottom left CLB
resource, each slice has the coordinates shown in Table 5-15.

Table 5-15: Slice Coordinates in the Bottom-Left CLB Resource
Slice S3 Slice S2 Slice S1 Slice SO

X1Y1 X0Y1 X1YO0 X0YO0

To constrain placement, shift register instances can have LOC properties attached to them.
Each 16-bit shift register fits in one LUT.

A 32-bit shift register in static or dynamic address mode fits in one slice (two LUTs and one
MUXE?5). This shift register can be placed in SLICEM only.

A 64-bit shift register in static or dynamic address mode fits in two slices. These slices are
S0 and S2. Figure 5-30 illustrates the position of the four LUTs in a CLB resource.

The dedicated CLB shift chain runs from the top slice to the bottom slice. The data input
pin must either be in slice SO or in S2. The address selected as the output pin (Q) is the
MUXF6 output.

—— e —— — — — — —————— —

| |
| |
D 4 |
| LUT |
| |
| |
| F5 |
| |
| |
| LT | |
: Slice S2 :
| |
| |
|
: L+ (output SRLC64E)
| L F6 |
I LUT |
A '
| |
I F5 '
| |
| Lot '
| Q63 : SRLC64E
Slice SO
| lce |/ CLB
————————————————— —

UG070_5_30_122205

Figure 5-30: Shift Register Placement

224

www.Xxilinx.com Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

2:)(||_|NX® Shift Registers (SRLs) Primitives and Verilog/VHDL Example

Fully Synchronous Shift Registers

All shift-register primitives and submodules do not use the register(s) available in the
same slice(s). To implement a fully synchronous read and write shift register, output pin Q
must be connected to a flip-flop. Both the shift register and the flip-flop share the same
clock, as shown in Figure 5-31.

D Q D Q Synchronous
SRLC16E Output
Add
ress FE
CE (Write Enable)
CLK — Q15

UG070_5_31_031208

Figure 5-31: Fully Synchronous Shift Register

This configuration provides a better timing solution and simplifies the design. Because the
flip-flop must be considered to be the last register in the shift-register chain, the static or
dynamic address should point to the desired length minus one. If needed, the cascadable
output can also be registered in a flip-flop.

Static-Length Shift Registers

The cascadable16-bit shift register implements any static length mode shift register
without the dedicated multiplexers (MUXF5, MUXF6,...). Figure 5-32 illustrates a 40-bit
shift register. Only the last SRLC16E primitive needs to have its address inputs tied to
0111. Alternatively, shift register length can be limited to 39 bits (address tied to 0110)
and a flip-flop can be used as the last register. (In an SRLC16E primitive, the shift register
length is the address input + 1.)

D——D D——D

LUT LUT

Q15 Q15
SRLC16 _‘ SRLC16 _‘

LUT LUT

Q15 Q15
SRLC16 _‘ SRLC16 _‘

FE
L D Qf— OuUT L D Q D QF—OuT
0111 744> A[3:0] (40-bit SRL) 9110 —] A[3:0] (40-bit SRL)
LUT LUT
Q15 Q15
SRLC16 SRLC16

UG070_5_32_031208

Figure 5-32: 40-bit Static-Length Shift Register

Virtex-4 FPGA User Guide www.Xxilinx.com 225
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 5: Configurable Logic Blocks (CLBs) i:)("JNX®

VHDL and Verilog Instantiation

VHDL and Verilog instantiation templates are available for all primitives and submodules.

In VHDL, each template has a component declaration section and an architecture section.
Each part of the template should be inserted within the VHDL design file. The port map of
the architecture section should include the design signal names.

The ShiftRegister_C_x (with x = 16, 32, or 64) templates are cascadable modules and
instantiate the corresponding SRLCXE primitive (16) or submodule (32 or 64).

The ShiftRegister_16 template can be used to instantiate an SRL16 primitive.

VHDL and Verilog Templates

In template nomenclature, the number indicates the number of bits (for example,
SHIFT_REGISTER_16 is the template for the 16-bit shift register). A “C” extension means
the template is cascadable.

The following are templates for primitives:

e SHIFT_REGISTER_16
e SHIFT_REGISTER_C_16

The following are templates for submodules:

e SHIFT_REGISTER_C_32 (submodule: SRLC32E_SUBM)
o SHIFT_REGISTER_C_64 (submodule: SRLC64E_SUBM)

The corresponding submodules have to be synthesized with the design.

Templates for the SHIFT_REGISTER_16_C module are provided in VHDL and Verilog
code as an example.

VHDL Template

-- Module: SHIFT REGISTER_C_16

-- Description: VHDL instantiation template

-- CASCADABLE 16-bit shift register with enable (SRLC16E)
-- Device: Virtex-4 Family

-- Components Declarations:

component SRLC16E

INIT : bit_vector := X"0000"
)
port (
D : in std_logic;
CE : in std_logic;
CLK : in std_logic;
A0 : in std_logic;
Al : in std_logic;
A2 : in std_logic;
A3 : in std_logic;
Q : out std_logic;
Q15 : out std_logic

)
end component;
-- Architecture Section:

-- Attributes for Shift Register initialization ("0" by default):

226 www.Xxilinx.com Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

SOXILINX®

Multiplexer Primitives and Verilog/VHDL Examples

attribute INIT: string;

attribute INIT of U_SRLC16E: label is "0000";

-- ShiftRegister Instantiation
U_SRLC1l6E: SRLC16E

port map (
D = , insert input signal
CE = , insert Clock Enable signal (optional)
CLK = , insert Clock signal
AQ = , insert Address 0 signal
Al = , insert Address 1 signal
A2 = , insert Address 2 signal
A3 = , insert Address 3 signal
0 = , insert output signal
insert cascadable output signal

Verilog Template

// Module: SHIFT_REGISTER_16

// Description: Verilog instantiation template

// Cascadable 16-bit Shift Register with Clock Enable (SRLC16E)
// Device: Virtex-4 Family

defparam
SRLC16E U_SRLC16E (.D

)

Multiplexer Primitives and Verilog/VHDL Examples

This section provides generic VHDL and Verilog reference code implementing
multiplexers. These submodules are built from LUTs and the dedicated MUXF5, MUXF6,
MUXEF7, and MUXF8 multiplexers. To automatically generate large multiplexers using
these dedicated elements, use the CORE Generator software Bit Multiplexer and Bus
Multiplexer modules.

For applications such as comparators, encoder-decoders or “case” statement in VHDL or
Verilog, these resources offer an optimal solution.

Virtex-4 FPGA User Guide

www.Xxilinx.com 227

UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

SIXILINX®

Chapter 5: Configurable Logic Blocks (CLBs)

Multiplexer Primitives and Submodules

Four primitives are available for access to the dedicated MUXFX in each slice. In the
example shown in Table 5-16, MUXF?7 is available only in slice S2.

Table 5-16: MUXFX Resources

Primitive Slice Control Input Output
MUXF5 S0, S1,S2,S3 S 10,11 O
MUXE6 S0, S1 S 10,11 O
MUXF7 S2 S 10,11 O
MUXF8 S3 S 10,11 O

In addition to the primitives, five submodules to implement multiplexers from 2:1 to 32:1
are provided in VHDL and Verilog code. Synthesis tools can automatically infer these
primitives (MUXF5, MUXF6, MUXF7, and MUXES); however, the submodules described
in this section use instantiation of the new MUXEFX to guarantee an optimized result.
Table 5-17 lists available submodules.

Table 5-17: Available Submodules

Submodule Multiplexer Control Input Output
MUX_2_1_SUBM 2:1 SELECT_I DATA_I[1:0] DATA_O
MUX_4_1_SUBM 4:1 SELECT _I[1:0] DATA_I[3:0] DATA_O
MUX_8_1_SUBM 8:1 SELECT_I[2:0] | DATA_I[8:0] DATA_O
MUX_16_1_SUBM 16:1 SELECT_I[3:0] | DATA_I[15:0] | DATA_O
MUX_32_1_SUBM 32:1 SELECT_I[4:0] DATA_I[31:0] DATA_O
Port Signals
Data In - DATA_I

The data input provides the data to be selected by the SELECT_I signal(s).

Control In - SELECT _|I

The select input signal or bus determines the DATA_I signal to be connected to the output
DATA_O. For example, the MUX_4_1_SUBM multiplexer has a 2-bit SELECT_I bus and a
4-bit DATA_I bus. Table 5-18 shows the DATA_I selected for each SELECT_I value.

Table 5-18: Selected Inputs

SELECT_I[1:0] DATA_O
00 DATA_I[0]
01 DATA_I[1]
10 DATA_I[2]
11 DATA_I[3]

228 Virtex-4 FPGA User Guide

UGO070 (v2.6) December 1, 2008

www.Xxilinx.com

http://www.xilinx.com

2:)(||_|NX® Multiplexer Primitives and Verilog/VHDL Examples

Data Out - DATA_O

The data output O provides the data value (1 bit) selected by the control inputs.

Multiplexer Verilog/VHDL Examples

Multiplexers are used in various applications. These are often inferred by synthesis tools
when a “case” statement is used (see the following example). Comparators, encoder-
decoders and wide-input combinatorial functions are optimized when they are based on
one level of LUTs and dedicated MUXEX resources of the Virtex-4 FPGA CLBs.

VHDL and Verilog Instantiation

The primitives (MUXF5, MUXF6, and so forth) can be instantiated in VHDL or Verilog
code, to design wide-input functions.

The submodules MUX_2_1_SUBM, MUX_4_1_SUBM, and so forth) can be instantiated in
VHDL or Verilog code to implement multiplexers. However the corresponding submodule
must be added to the design directory as hierarchical submodule. For example, if a module
is using the MUX_16_1_SUBM, the MUX_16_1_SUBM.vhd file (VHDL code) or
MUX_16_1_SUBM.v file (Verilog code) must be compiled with the design source code. The
submodule code can also be copied into the designer source code.

VHDL and Verilog Submodules

VHDL and Verilog submodules are available to implement multiplexers up to 32:1. They
illustrate how to design with the MUXFX resources. When synthesis infers the
corresponding MUXFX resource(s), the VHDL or Verilog code is behavioral code (“case”
statement). Otherwise, the equivalent “case” statement is provided in comments and the
correct MUXFX are instantiated. However, most synthesis tools support the inference of all
of the MUXFX. The examples are guidelines for designing other wide-input functions. The
available submodules are:

e MUX_2_1_SUBM (behavioral code)
e MUX_4_1_SUBM

¢ MUX_8_1_SUBM

e MUX_16_1_SUBM

e MUX_32_1_SUBM

The corresponding submodules have to be synthesized with the design. The submodule
MUX_16_1_SUBM is provided as an example in VHDL and Verilog.

VHDL Template

-- Module: MUX_16_1 SUBM

-- Description: Multiplexer 16:1

-- Device: Virtex-4 Family

library IEEE;

use IEEE.std_logic_1164.all;

library UNISIM;

use UNISIM.VCOMPONENTS.ALL;

entity MUX_16_1_SUBM is

port (

DATA_TI: in std_logic_vector (15 downto 0);
SELECT_TI: in std_logic_vector (3 downto 0);

Virtex-4 FPGA User Guide www.Xxilinx.com 229
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 5: Configurable Logic Blocks (CLBs)

SIXILINX®

DATA_O: out std_logic
)
end MUX_16_1_SUBM;

architecture MUX_16_1 SUBM arch of MUX 16_1 SUBM is

-- Component Declarations:
component MUXF7

port (

I0: in std_logic;

I1: in std_logic;

S: in std_logic;

O: out std_logic

)
end component;
signal DATA_MSB
signal DATA_LSB

std_logic;
std_logic;

begin

SELECT_PROCESS_LSB: process (SELECT_ T,

begin
case SELECT I (2 downto 0) 1is
when "000" => DATA_LSB <= DATA_ T
when "001" => DATA_LSB <= DATA_ T
when "010" => DATA_LSB <= DATA_T
when "011" => DATA_LSB <= DATA_T
when "100" => DATA_LSB <= DATA I
when "101" => DATA_LSB <= DATA_ T
when "110" => DATA_LSB <= DATA_ T
when "111" => DATA_LSB <= DATA_ T
when others => DATA LSB <= 'X';
end case;
end process SELECT_PROCESS_LSB;

N oUW N RO

SELECT_PROCESS_MSB: process (SELECT T,

begin
case SELECT I (2 downto 0) is
when "000" => DATA_MSB <= DATA_ I
when "001" => DATA_MSB <= DATA_ T
when "010" => DATA_MSB <= DATA_ T
when "011" => DATA_MSB <= DATA_ T
when "100" => DATA_MSB <= DATA_ T
when "101" => DATA_MSB <= DATA_T
when "110" => DATA_MSB <= DATA_T
when "111" => DATA_MSB <= DATA_ T
when others => DATA_MSB <= 'X';
end case;

end process SELECT_PROCESS_MSB;

-- MUXF7 instantiation

U_MUXF7: MUXF7
port map (
I0 => DATA_LSB,
I1 => DATA_MSB,
S => SELECT_I (3),
O => DATA_O
)

end MUX_16_1_SUBM_arch;

s sl e
O WN R o~ —

DATA_TI)

DATA_TI)

230

www.Xxilinx.com

Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

SOXILINX®

Multiplexer Primitives and Verilog/VHDL Examples

Verilog Template

// Module:
//

MUX_16_1_SUBM

// Description: Multiplexer 16:1
Virtex-4 Family
[mm e

// Device:

//

module MUX_16_1_SUBM

input [15:

0]DATA_I;

input [3:0]SELECT_I;

output DATA_O;

wire [2:0]

SELECT;

reg DATA_LSB;
reg DATA_MSB;

(DATA_I, SELECT I, DATA O);

assign SELECT[2:0] = SELECT_I[2:0];
always @ (SELECT or DATA_TI)
case (SELECT)

DATA_LSB <= DATA_TI[0];

DATA_LSB <= DATA TI[4];

DATA_MSB <= DATA_I[8];

DATA_MSB <= DATA_TI[12];

3'b000
3'b001 DATA_LSB <= DATA_I[1];
3'b010 DATA_LSB <= DATA TI[2];
3'b011 DATA_LSB <= DATA_TI[3];
3'b100
3'b101 DATA_LSB <= DATA_I[5];
3'b110 DATA_LSB <= DATA_I[6];
3'b111 DATA_LSB <= DATA_I[7];
default DATA_LSB <= 1'bx;
endcase
always @ (SELECT or DATA_TI)
case (SELECT)
3'b000
3'b001 DATA_MSB <= DATA_TI[9];
3'b010 DATA_MSB <= DATA_I[10];
3'b011 DATA_MSB <= DATA_I[11];
3'b100
3'b101 DATA_MSB <= DATA_I[13];
3'b110 DATA_MSB <= DATA_I[14];
3'bl11 DATA_MSB <= DATA_TI[15];
default DATA_MSB <= 1'bx;
endcase

// MUXF7 instantiation

MUXF7 U_MUXF7

.I1 (DATA_MSB),
.S(SELECT_I[3]),

.O(DATA_O)
)
endmodule
//
*/

(.I0(DATA_LSB),

Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

www.Xxilinx.com 231

http://www.xilinx.com

Chapter 5: Configurable Logic Blocks (CLBs) 2:)(||_|NX®

232 www.Xxilinx.com Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

S XILINX®
Chapter 6

SelectIO Resources

/0 Tile Overview

Input/output characteristics and logic resources are covered in three consecutive chapters.
Chapter 6, “Select]lO Resources,” describes the electrical behavior of the output drivers and
input receivers, and gives detailed examples of many standard interfaces. Chapter 7,
“SelectlO Logic Resources,” describes the input and output data registers and their
Double-Data-Rate (DDR) operation, and the programmable input delay (IDELAY).
Chapter 8, “Advanced SelectlO Logic Resources,” describes the data
serializer/deserializer (SERDES).

An /0 tile contains two IOBs, two ILOGICs, and two OLOGICs. Figure 6-1 shows a
Virtex-4 FPGA 1/0 tile.

ILOGIC
(Chapter 7)
or
ISERDES
(Chapter 8)

I0B
(Chapter 6)

Pad

OLOGIC
(Chapter 7)
or
OSERDES
(Chapter 8)

ILOGIC
(Chapter 7)
or
ISERDES
(Chapter 8)

10B
(Chapter 6)

Pad

OLOGIC
(Chapter 7)
or
OSERDES
(Chapter 8)

ug070_6_01_071104

Figure 6-1: Virtex-4 FPGA I/O Tile

Virtex-4 FPGA User Guide www.Xxilinx.com 233
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 6: SelectlO Resources 2:)(||_|NX®

SelectlO Resources Introduction

All Virtex-4 FPGAs have configurable high-performance SelectlO™ technology drivers
and receivers, supporting a wide variety of standard interfaces. The robust feature set
includes programmable control of output strength and slew rate, and on-chip termination
using Digitally Controlled Impedance (DCI). All banks can support 3.3V 1/0.

Each IOB contains both input, output, and 3-state SelectlO drivers. These drivers can be
configured to various I/O standards. Differential I/O uses the two IOBs grouped together
in one tile.

¢ Single-ended I/O standards (LVCMOS, LVTTL, HSTL, SSTL, GTL, PCI)

e Differential I/O standards (LVDS, LDT, LVPECL, BLVDS, CSE Differential HSTL and
SSTL)

Note: Differential and Vrgg-dependent inputs are powered by Vecaux-

Each Virtex-4 FPGA 1/0 tile contains two IOBs, and also two ILOGIC blocks and two
OLOGIC blocks, as described in Chapter 7, “SelectlO Logic Resources”.

Figure 6-2 shows the basic IOB and its connections to the internal logic and the device pad.

DIFFO_IN
PAD 4| » DIFFO_OUT
T I > PADOUT
o :[>—|:> |
OUTBUF
INBUF
DIFFI_IN | ug070_6_02_071904

Figure 6-2: Basic 0B Diagram

Each IOB has a direct connection to an ILOGIC/OLOGIC pair containing the input and
output logic resources for data and 3-state control for the IOB. When using multiple clocks
in Virtex-4 FPGA 1/0 tiles, the input clocks to the two ILOGIC blocks and the two
OLOGIC blocks are not shared. Both ILOGIC and OLOGIC can be configured as ISERDES
and OSERDES, respectively, as described in Chapter 8, “Advanced SelectlO Logic
Resources.”

SelectlO Technology Resources General Guidelines

This section summarizes the general guidelines to be considered when designing with the
SelectlO technology resources of Virtex-4 FPGAs.

234

www.Xxilinx.com Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

2:)(||_|NX® SelectlO Technology Resources General Guidelines

Virtex-4 FPGA 1/0O Bank Rules

The number of banks available in Virtex-4 devices is not limited to eight as in previous
Xilinx® architectures. In Virtex-4 devices, with some exceptions in the center column, an
I/0 bank consists of 64 IOBs (32 CLBs and two clock regions). As a result, the number of
banks depends upon the device size. In the Virtex-4 Family Overview the total number of
I/0 banks is listed by device type. The XC4VLX25 has 10 usable I/O banks and one
configuration bank. Figure 6-3 is an example of a columnar floorplan showing the

XC4VLX251/0 banks.

BANK BANK
64 1/0 64 1/0
BANK
BANK
BANK BANK
64 1/0 64 1/0
BANK
BANK
BANK BANK
64 1/0 64 1/0

ug070_6_03_071404

Figure 6-3: XC4VLX25 I/O Banks

3.3V I/O Support

The Virtex-4 architecture supports 3.3V single-ended 1/0O standards in all banks.

Reference Voltage (Vrgg) Pins

Low-voltage, single-ended I/O standards with a differential amplifier input buffer require
an input reference voltage (Vrgp). VRrEr is an external input into Virtex-4 devices. Within
each I/O bank, one of every 16 I/O pins is automatically configured as a Vggg input, if
using a single-ended I/O standard requiring a differential amplifier input buffer.

Output Drive Source Voltage (Vcco) Pins

Many of the low-voltage I/O standards supported by Virtex-4 devices require a different
output drive voltage (Vo). As a result, each device often supports multiple output drive
source voltages.

Output buffers within a given V¢ bank must share the same output drive source
voltage. The following input buffers use the Vo voltage: LVITL, LVCMOS, PCI, LVDCI
and other DCI standards.

Virtex-4 FPGA User Guide www.Xxilinx.com 235
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 6: SelectlO Resources i:)("JNX®

Virtex-4 FPGA Digitally Controlled Impedance (DCI)

Introduction

As FPGAs get bigger and system clock speeds get faster, PC board design and
manufacturing becomes more difficult. With ever faster edge rates, maintaining signal
integrity becomes a critical issue. PC board traces must be properly terminated to avoid
reflections or ringing.

To terminate a trace, resistors are traditionally added to make the output and/or input
match the impedance of the receiver or driver to the impedance of the trace. However, due
to increased device I/Os, adding resistors close to the device pins increases the board area
and component count, and can in some cases be physically impossible. To address these
issues and to achieve better signal integrity, Xilinx developed the Digitally Controlled
Impedance (DCI) technology.

DCI adjusts the output impedance or input termination to accurately match the
characteristic impedance of the transmission line. DCI actively adjusts the impedance of
the I/O to equal an external reference resistance. This compensates for changes in I/O
impedance due to process variation. It also continuously adjusts the impedance of the 1/O
to compensate for variations of temperature and supply voltage fluctuations.

In the case of controlled impedance drivers, DCI controls the driver impedance to match
two reference resistors, or optionally, to match half the value of these reference resistors.
DCI eliminates the need for external series termination resistors.

DCI provides the parallel or series termination for transmitters or receivers. This
eliminates the need for termination resistors on the board, reduces board routing
difficulties and component count, and improves signal integrity by eliminating stub
reflection. Stub reflection occurs when termination resistors are located too far from the
end of the transmission line. With DCI, the termination resistors are as close as possible to
the output driver or the input buffer, thus, eliminating stub reflections.

Xilinx DCI

DCI uses two multi-purpose reference pins in each bank to control the impedance of the
driver or the parallel termination value for all of the I/Os of that bank. The N reference pin
(VRN) must be pulled up to Vo by a reference resistor, and the P reference pin (VRP)
must be pulled down to ground by another reference resistor. The value of each reference
resistor should be equal to the characteristic impedance of the PC board traces, or should
be twice that value (see section “Driver with Termination to VCCO /2 (Split Termination),”
page 241).

When a DCI1/0 standard is used on a particular bank, the two multi-purpose reference
pins cannot be used as regular I/Os. However, if DCI I/O standards are not used in the
bank, these pins are available as regular I/O pins. The Virtex-4 Packaging and Pinout
Specification gives detailed pin descriptions.

DCI adjusts the impedance of the I/O by selectively turning transistors in the I/Os on or
off. The impedance is adjusted to match the external reference resistors. The impedance
adjustment process has two phases. The first phase compensates for process variations by
controlling the larger transistors in the I/Os. It occurs during the device startup sequence.
The second phase maintains the impedance in response to temperature and supply voltage
changes by controlling the smaller transistors in the I/Os. It begins immediately after the
first phase and continues indefinitely, even while the device is operating. By default, the
DONE pin does not go High until the first phase of the impedance adjustment process is
complete.

236

www.Xxilinx.com Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

SOXILINX®

SelectlO Technology Resources General Guidelines

The coarse impedance calibration during first phase of impedance adjustment can be
invoked after configuration by instantiating the DCIRESET primitive. By toggling the RST
input to the DCIRESET primitive while the device is operating, the DCI state machine is
reset and both phases of impedance adjustment proceed in succession. All I/Os using DCI
will be unavailable until the LOCKED output from the DCIRESET block is asserted.

This functionality is useful in applications where the temperature and/or supply voltage
changes significantly from device power-up to the nominal operating condition. Once at
the nominal operating temperature and voltage, performing the first phase of impedance
adjustment allows optimal headroom for the second phase of impedance adjustment.

For controlled impedance output drivers, the impedance can be adjusted either to match
the reference resistors or half the resistance of the reference resistors. For on-chip
termination, the termination is always adjusted to match the reference resistors.

DCI can configure output drivers to be the following types:

1. Controlled Impedance Driver (Source Termination)

2. Controlled Impedance Driver with Half Impedance (Source Termination)
It can also configure inputs to have the following types of on-chip terminations:

1. Input termination to Vo (Single Termination)

2. Input termination to Vcp/2 (Split Termination, Thevenin equivalent)
For bidirectional operation, both ends of the line can be DCI-terminated permanently:

1. Driver with termination to Vccq (Single Termination)

2. Driver with termination to Vcco/2 (Split Termination, Thevenin equivalent)

Alternatively, bidirectional point-to-point lines can use controlled-impedance drivers
(with 3-state buffers) on both ends.

Controlled Impedance Driver (Source Termination)

Some 1/0 standards, such as LVCMOS, must have a drive impedance matching the
characteristic impedance of the driven line. DCI can provide controlled impedance output
drivers to eliminate reflections without an external source termination. The impedance is
set by the external reference resistors with resistance equal to the trace impedance.

The DCI I/0O standards supporting the controlled impedance driver are: LVDCI_15,
LVDCI_18, LVDCI_25, LVDCI_33, HSLVDCI_15, HSLVDCI_18, HSLVDCI_25, and
HSLVDCI_33. Figure 6-4 illustrates a controlled impedance driver in a Virtex-4 device.

UG070_6_04_030708

Figure 6-4: Controlled Impedance Driver

Controlled Impedance Driver with Half Impedance (Source Termination)

DCI also provides drivers with one half of the impedance of the reference resistors. This
doubling of the reference resistor value reduces the static power consumption through

Virtex-4 FPGA User Guide www.Xxilinx.com 237
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 6: SelectlO Resources i:)("JNX®

these resistors by a factor of half. The DCII/O standards supporting controlled impedance
drivers with half-impedance are LVDCI_DV2_15, LVDCI_DV2_18, and LVDCI_DV2_25.

Figure 6-5 illustrates a controlled driver with half impedance inside a Virtex-4 device. The
reference resistors R must be 2 x Z in order to match the impedance of Z,

| Zo

UG070_6_05_030708

Figure 6-5: Controlled Impedance Driver with Half Impedance

Input Termination to V¢ (Single Termination)

Some I/0O standards require an input termination to Vg (see Figure 6-6).

Veeo

|
" VRer
' Virtex-4 FPGA

UG070_6_06_102808

Figure 6-6: Input Termination to V¢ without DCI

DCI can also provide input termination to Vo using single termination. The termination
resistance is set by the reference resistors. Both GTL and HSTL standards are controlled by
50Q2 reference resistors. The DCI1/0O standards supporting single termination are:
GTL_DCI, GTLP_DCI, HSTL_III_DCIL, HSTL_III_DCI_18, HSTL_IV_DCI, and
HSTL_IV_DCI_18.

Figure 6-7 illustrates DCI single termination inside a Virtex-4 device.

.- __
UG070_6_07_030708

Figure 6-7: Input Termination Using DCI Single Termination

238

www.Xxilinx.com Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

2:)(||_|NX® SelectlO Technology Resources General Guidelines

Input Termination to Vco/2 (Split Termination)

Some 1/0 standards (e.g., HSTL Class I and II) require an input termination voltage of
Veco/2 (see Figure 6-8).

|
|
|
|
Q_)——— >
Zy |
" Veer
|
|

Virtex-4 FPGA

UG070_6_08_030708

Figure 6-8: Input Termination to Voco/2 without DCI

This is equivalent to having a split termination composed of two resistors. One terminates
to Vo, the other to ground. The resistor values are 2R. DCI provides termination to
Vcco/2 using split termination. The termination resistance is set by the external reference
resistors, i.e., the resistors to Voo and ground are each twice the reference resistor value.
Both HSTL and SSTL standards need 50Q2 external reference resistors. The DCII/O
standards supporting split termination are: HSTL_I_DCI, HSTL_I_DCI_18, HSTL_II_DCI,
HSTL_II_DCI_18, DIFF_HSTL_II_DCI, DIFF_HSTL_II_DCI_18, SSTL2_I_DCI,
SSTL2_II_DCI, SSTL18_I_DCI, SSTL18_II_DCI, DIFF_SSTL2_II_DCI, and
DIFF_SSTL18_II_DCL

Figure 6-9 illustrates split termination inside a Virtex-4 device.

o8

|

i Veco

|

|

: 2R

|
O >
Zy

V [E—

| oR ' REF

|

|

|

|

UG070_6_09_030708

Figure 6-9: Input Termination to V¢co/2 Using DCI Split Termination

Virtex-4 FPGA User Guide www.Xxilinx.com 239
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 6: SelectlO Resources i:)("JNX®

Driver with Termination to V¢ (Single Termination)

Some I/0 standards (e.g., HSTL Class IV) require an output termination to Vcq.
Figure 6-10 illustrates an output termination to Vccq.

Veeco

Zy

UG070_6_10_030708

Figure 6-10: Driver with Termination to V¢ without DCI

DCI can provide an output termination to V¢ using single termination. In this case, DCI
only controls the impedance of the termination, but not the driver. Both GTL and HSTL
standards need 50Q external reference resistors. The DCI I/O standards supporting
drivers with single termination are: GTL_DCI, GTLP_DCI, HSTL_IV_DCI, and
HSTL_IV_DCI_18.

Figure 6-11 illustrates a driver with single termination inside a Virtex-4 device.
|
I
|
I
|
I
|

|
%o
|
Virtex-4 FPGA DCI |

7777777777777)
UG070_6_11_030708

Figure 6-11: Driver with Termination to V¢ Using DCI Single Termination

240

www.Xxilinx.com Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

2:)(||_|NX® SelectlO Technology Resources General Guidelines

Driver with Termination to Vgco/2 (Split Termination)

Some 1/0 standards, such as HSTL Class II, require an output termination to Vcco/2 (see
Figure 6-12).

. QD

Zy

UG070_6_12_030708

Figure 6-12: Driver with Termination to V¢co/2 without DCI

DCI can provide output termination to Vcp/2 using split termination. DCI only controls
the impedance of the termination, but not the driver. Both HSTL and SSTL standards need
50Q external reference resistors. The DCI I/O standards supporting drivers with split
termination are: HSTL_II_DCI, HSTL_II_DCI_18, SSTL2_II_DCI, SSTL18_II_DCI,
DIFF_HSTL_II_DCI, DIFF_HSTL_II_DCI_18, DIFF_SSTL2_II_DCI, and
DIFF_SSTL18_II_DCI.

Figure 6-13 illustrates a driver with split termination inside a Virtex-4 device.

___ Virtex-4 FPGA DCI |

UG070_6_13_030708

Figure 6-13: Driver with Termination to Voco/2 Using DCI Split Termination

DCI in Virtex-4 FPGA Hardware

DCI works with single-ended I/0O standards and the 2.5V LVDS 1/0 standard. DCI
supports the following Virtex-4 FPGA standards:

LVDCI, HSLVDCI, LVDCI_DV2, GTL_DCI, GTLP_DCI, HSTL_I_DCI, HSTL_II_DCI,
HSTL_III_DCI, HSTL_IV_DCI, HSTL_I_DCI_18, HSTL_II_DCI_18, HSTL_III_DCI_18,
HSTL_IV_DCI_18, SSTL2_1_DCI, SSTL2_II_DCI, SSTL18_I_DCI, SSTL18_II_DC(I,
DIFF_HSTL_II_DCI, DIFF_HSTL_II_DCI_18, DIFF_SSTL2_II_DCI, DIFF_SSTL18_II_D(I,
LVDS_25_DCI, and LVDSEXT_25_DCL

To correctly use DCl in a Virtex-4 device, users must follow the following rules:

Virtex-4 FPGA User Guide www.Xxilinx.com 241
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 6: SelectlO Resources i:)("JNX®

Vcco pins must be connected to the appropriate Vg voltage based on the
IOSTANDARD:s in that bank.

Correct DCI I/0O buffers must be used in the software either by using IOSTANDARD
attributes or instantiations in the HDL code.

Some DCI standards require that external reference resistors be connected to
multipurpose pins VRP and VRN in the bank. Where this is required, these two
multipurpose pins cannot be used as regular user 1/Os. Refer to the Virtex-4 FPGA
pinouts for the specific pin locations. Pin VRN must be pulled up to Vg by its
reference resistor. Pin VRP must be pulled down to ground by its reference resistor.

However, some DCI standards do not require external reference resistors on the
VRP/VRN pins. If these are the only DCI-based I/O standards in a bank, the VRP and
VRN pins in that bank can be used as general-purpose 1/0Os.

¢ The following DCI outputs do not require reference resistors on VRP/VRN:

HSTL_I_DCI
HSTL_III_DCI
HSTL_I_DCI_18
HSTL_III_DCI_18
SSTL2_I_DCI
SSTL18_I_DCI

¢ The following inputs do not require reference resistors on VRP/VRN:

LVDCI_15
LVDCI_18
LVDCI_25
LVDCI_33
LVDCI_DV2_15
LVDCI_DV2_18
LVDCI_DV2_25
LVDCI_DV2_33

The value of the external reference resistors should be selected to give the desired
output impedance. If using GTL_DCI, HSTL_DCI, or SSTL_DCI I/O standards, then
the external reference resistors should be 50Q

The values of the reference resistors must be within the supported range (20Q — 1000Q).
Follow the DCI 1/0O banking rules:

a. Vggpmust be compatible for all of the inputs in the same bank.

b. Vcco must be compatible for all of the inputs and outputs in the same bank.

c. No more than one DCII/0O standard using single termination type is allowed per
bank.

d. No more than one DCI I/O standard using split termination type is allowed per
bank.

e. Single termination and split termination, controlled impedance driver, and
controlled impedance driver with half impedance can co-exist in the same bank.

The following packages to not support DCI in Banks 1 and 2: SE363, FF668, FF676,
FF672, and FF1152.

In addition, the following devices do not support DCI in Banks 1 and 2: XC4VLX15,
XC4VLX25, XC4VSX25, XC4VSX35, XC4VFX12, XC4VFX20, XC4VFX40, and
XC4VEX60.

242

www.Xxilinx.com Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

2:)(||_|NX® SelectlO Technology Resources General Guidelines

The behavior of a DCI 3-state outputs is as follows:

If a LVDCI or LVDCI_DV2 driver is in 3-state, the driver is 3-stated. If a driver with single
or split termination is in 3-state, the driver is 3-stated but the termination resistor remains.

The following section lists actions that must be taken for each DCI I/O standard.

DCI Usage Examples
e Figure 6-14 provides examples illustrating the use of the HSTL_I_DCI, HSTL_II_DCI,
HSTL_III_DCI, and HSTL_IV_DCI I/O standards.

e Figure 6-15 provides examples illustrating the use of the SSTL2_I_DCI and
SSTL2_II_DCI I/0O standards.

e Figure 6-16 provides examples illustrating the use of the LVDS_25_DCI and
LVDSEXT_25_DCII/0O standards.

Virtex-4 FPGA User Guide www.Xxilinx.com 243
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 6: SelectlO Resources

SIXILINX®

Conventional

DCI Transmit
Conventional
Receive

Conventional
Transmit
DCI Receive

DCI Transmit
DCI Receive

Bidirectional

Reference
Resistor

Recommended
Z

Notes:

HSTL_I HSTL_II HSTL_II HSTL_IV
Vcco/2 Vcco/2 Vcco/2 Vcco Vceo Vcco
N ST TN S TN TN SN N N
>z > : > Tz)H> > LTz >
] [_ [1 l_] ___
- " - " —_——_—— _—
| Veeo/2 Vecol Veco/2 | |
| —— Veco Vcco Vcco
| R | | REr—— | RE———
Zp | | |
D— > > @ > Lazy L
Virtex-4 FPGA | l—— . Virtex-4 FPGA| R Virtex-4 FPGA | l_ __
DCI | Virtex-4 FPGA | DCl | DCl
-———- Dol e =
r——= —_———— —_————
Vcco/2 |Vcco | r
_ | Veco Vcco IVcco
|
| > > > e
|V|rtex -4 FPGA |V|rtex -4 FPGA| — — I Virtex-4 FPGA o J | V|rtex 4 FPGA
L _ bcl L _ bl I oci ool
- - I_ R
IVcco Veco | | Vcco
| 38R R : I $8
T2 1> >0z >
Vlrtex 4 FPGA I Virtex-4 FPGA [Virtex-4 FPGAI Virtex-4 FPGA
00 I b Dl DCl
- —_ — — —_——— — - —_ — —
N/A N/A
Virtex-4 FPGA| | Virtex-4 FPGA Virtex-4 FPGA | | Virtex-4 FPGA
bol | _bo _ _pc_ _| |_Dbc _
VRN=VRP=R =2 VRN=VRP =R =2 VRN=VRP=R =2 VRN=VRP=R =2
0 0 0 0
50Q 50Q 50Q 50Q

1. Zg is the recommended PCB trace impedance.

Figure 6-14: HSTL DCI Usage Examples

UG070_6_14_031108

244

www.Xxilinx.com

Virtex-4 FPGA User Guide

UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

2:)(||_|NX® SelectlO Technology Resources General Guidelines

SSTL2_| or SSTL18_I SSTL2_Il or SSTL18_lI
Veeol2
Vceo/2 Vcecol2
— _i R R i_ —
Conventional
20
D R'“/i-}_yz ET
I R
DCI Transmit
Conventional
Receive | |
Virtex-4 FPGA| L)
DCI - = Virtex-4 FPGA
o2 |
__ba_
Conventional
Transmit
DCI Receive
| virtex-4 FPGA |Virtex-4 FPGA
| __bcl | _ bc _
:Vcco
DCI Transmit
DCI Receive
Virtex-4 FPGA [Virtex-4 FPGA
== I _oci_ | oo | | pol
Bidirectional N/A
Virtex-4 FPGAI | Virtex-4 FPGA
_ _Dg . DCI
Reference
Resistor VRN =VRP =R =2 VRN =VRP =R =27
Recommended 50 Q 50 Q
Zo®
Notes:

1. The SSTL-compatible 25Q series resistor is accounted for in the DCI buffer,
and it is not DCI controlled.

2. Z is the recommended PCB trace impedance.
UG070_6_15_031108

Figure 6-15: SSTL DCI Usage Examples

Virtex-4 FPGA User Guide www.Xxilinx.com 245
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 6: SelectlO Resources i:)("JNX®

LVDS_25_DCI and LVDSEXT_25_DCI Receiver

Conventional

_____ I LVDS

Conventional
Transmit
DCI Receive

|
|

| | = Virtex-4 FPGA
| LVDS DCI

Reference
Resistor VRN =VRP =R =2

Recommended 50 Q
20

Note: Only LvDS25_DCl is supported (Vo = 2.5V only)
UG070_6_16_031108

Figure 6-16: LVDS DCI Usage Examples

Virtex-4 FPGA SelectlO Primitives

The Xilinx software library includes an extensive list of primitives to support a variety of
1/0 standards available in the Virtex-4 FPGA 1/0O primitives. The following are five
generic primitive names representing most of the available single-ended I/O standards.

IBUF (input buffer)

IBUFG (clock input buffer)
OBUF (output buffer)

OBUFT (3-state output buffer)
IOBUF (input/output buffer)

246

www.Xxilinx.com Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

2:)(||_|NX® Virtex-4 FPGA SelectlO Primitives

These five generic primitive names represent most of the available differential I/O
standards:

e IBUFDS (input buffer)

e IBUFGDS (clock input buffer)

e OBUEFDS (output buffer)

e OBUFTDS (3-state output buffer)
e IOBUFDS (input/output buffer)

IBUF and IBUFG

Signals used as inputs to Virtex-4 devices must use an input buffer (IBUF). The generic
Virtex-4 FPGA IBUF primitive is shown in Figure 6-17.

IBUF/IBUFG

| (Input) O (Output)
From Device Pad into FPGA

UG070_6_17_031108

Figure 6-17: Input Buffer (IBUF/IBUFG) Primitives

The IBUF and IBUFG primitives are the same. IBUFGs are used when an input buffer is
used as a clock input. In the Xilinx software tools, an IBUFG is automatically placed at
clock input sites.

OBUF
An output buffer (OBUF) must be used to drive signals from Virtex-4 devices to external
output pads. A generic Virtex-4 FPGA OBUF primitive is shown in Figure 6-18.
OBUF
I (Input) O (Output)
From FPGA to Device Pad
UG070_6_18_031108
Figure 6-18: Output Buffer (OBUF) Primitive
OBUFT
The generic 3-state output buffer OBUFT, shown in Figure 6-19, typically implements
3-state outputs or bidirectional I/O.
OBUFT
3-state input
| (Input) O (Output)
From FPGA to Device Pad
UG070_6_19_031108
Figure 6-19: 3-State Output Buffer (OBUFT) Primitive
Virtex-4 FPGA User Guide www.xilinx.com 247

UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 6: SelectlO Resources 2:)(||_|NX®

IOBUF

The IOBUF primitive is needed when bidirectional signals require both an input buffer and
a 3-state output buffer with an active High 3-state pin. Figure 6-20 shows a generic Virtex-4

FPGA IOBUFE
IOBUF
T
3-state input
I (Input) {X| /0

from FPGA | to/from Device Pad
O (Output)
to FPGA

UG070_6_20_031108

Figure 6-20: Input/Output Buffer (IOBUF) Primitive

IBUFDS and IBUFGDS

The usage and rules corresponding to the differential primitives are similar to the single-
ended SelectIO primitives. Differential SelectlO primitives have two pins to and from the
device pads to show the P and N channel pins in a differential pair. N channel pins have a
“B” suffix.

Figure 6-21 shows the differential input buffer primitive.

IBUFDS/IBUFGDS
I_ +
% Output to
— FPGA
Inputs from
Device Pads

UG070_6_21_031108

Figure 6-21: Differential Input Buffer Primitive (IBUFDS/IBUFGDS)

OBUFDS

Figure 6-22 shows the differential output buffer primitive.

OBUFDS

| u Output to

—

Input from 5 @ Device Pads
FPGA

UG070_6_22 031108

Figure 6-22: Differential Output Buffer Primitive (OBUFDS)

248 www.Xxilinx.com Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

SOXILINX®

Virtex-4 FPGA SelectlO Primitives

OBUFTDS

Figure 6-23 shows the differential 3-state output buffer primitive.
OBUFTDS

3-state Input T

I E Output to

D Pad
Input from evice Pads
FPGA @

UG070_6_23_031108

Figure 6-23: Differential 3-state Output Buffer Primitive (OBUFTDS)

IOBUFDS

Figure 6-24 shows the differential input/output buffer primitive.

IOBUFDS

T
3-state Input

| (Input)

to/from
from FPGA |0B| Device Pad

O (Output)
to FPGA

UG070_6_24_031108

Figure 6-24: Differential Input/Output Buffer Primitive (IOBUFDS)

Virtex-4 FPGA SelectlO Attributes/Constraints

Access to some Virtex-4 FPGA I/0O resource features (e.g., location constraints, input delay,
output drive strength, and slew rate) is available through the attributes/constraints
associated with these features. For more information a Constraints Guide is available on
the Xilinx website with syntax examples and VHDL/ Verilog reference code. This guide is
available inside the Software Manuals at:

http:/ /www.support.xilinx.com/support/software_manuals.htm

Location Constraints

The location constraint (LOC) must be used to specify the I/O location of an instantiated
1/0 primitive. The possible values for the location constraint are all the external port
identifiers (e.g., A8, M5, AMS, etc.). These values are device and package size dependent.

The LOC attribute uses the following syntax in the UCF file:

INST <I/O_BUFFER_INSTANTIATION_NAME> LOC =
"<EXTERNAL_PORT_IDENTIFIER>";

Example:

INST MY_IO LOC=R7;

Virtex-4 FPGA User Guide www.Xxilinx.com 249
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com
http://www.support.xilinx.com/support/software_manuals.htm

Chapter 6: SelectlO Resources i:)("JNX®

IOStandard Attribute

The IOSTANDARD attribute is available to choose the values for an I/O standard for all
I/0 buffers. The supported I/O standards are listed in Table 6-38. The IOSTANDARD
attribute uses the following syntax in the UCEF file:

INST <I/O_BUFFER_INSTANTIATION_NAME> IOSTANDARD="<IOSTANDARD VALUE>";

The IOSTANDARD default for single-ended I/0 is LVCMOS?25, for differential I/Os the
default is LVDS_25.

Output Slew Rate Attributes

A variety of attribute values provide the option of choosing the desired slew rate for
single-ended I/O output buffers. For LVTTL and LVCMOS output buffers (OBUE, OBUFT,
and IOBUF), the desired slew rate can be specified with the SLEW attribute.

The allowed values for the SLEW attribute are:
e SLEW =SLOW (Default)
e SLEW =FAST
The SLEW attribute uses the following syntax in the UCEF file:
INST <I/O_BUFFER_INSTANTIATION_NAME> SLEW = "<SLEW_VALUE>";

By the default, the slew rate for each output buffer is set to SLOW. This is the default used
to minimize the power bus transients when switching non-critical signals.

Output Drive Strength Attributes

For LVTTL and LVCMOS output buffers (OBUF, OBUFT, and IOBUEF), the desired drive
strength (in mA) can be specified with the DRIVE attribute.

The allowed values for the DRIVE attribute are:

e DRIVE=2

e DRIVE=4

e DRIVE=6

e DRIVE=8

e DRIVE = 12 (Default)
e DRIVE=16

e DRIVE=24
The DRIVE attribute uses the following syntax in the UCF file:

INST <I/O_BUFFER_INSTANTIATION_NAME> DRIVE = "<DRIVE_VALUE>";

Lower Capacitance 1/O Attributes

To lower the effective input capacitance, some I/O resources do not have differential
driver circuits (LVDS_25, LVDSEXT_25, LVDS_25_DCI, LVDSEXT_25_DCI, ULVDS_25,
RSDS_25, and LDT_25). Using these I/Os improves the signal integrity of high-speed clock
inputs. Differential inputs and all output standards other than these are still supported by
low capacitance I/Os. Refer to “Clock Capable I/O” in Chapter 1 for further information.

The allowed values for the CAPACITANCE attribute are:
e DONT_CARE (Default)

250

www.Xxilinx.com Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

2:)(||_|NX® Virtex-4 FPGA SelectlO Primitives

¢ NORMAL
e LOW
The CAPACITANCE attribute uses the following syntax in the UCF file:

INST <I/O_BUFFER_INSTANTIATION_NAME> CAPACITANCE=
"<CAPACITANCE_VALUE>";

PULLUP/PULLDOWN/KEEPER for IBUF, OBUFT, and IOBUF

When using 3-state output (OBUFT) or bidirectional (IOBUF) buffers, the output can have
a weak pull-up, a weak pull-down, or a weak keeper circuit. For input (IBUF) buffers, the
input can have either a weak pull-up or a weak pull-down circuit. These features can be
invoked by adding one of the following possible constraint values to the buffer:

e PULLUP
e PULLDOWN
e KEEPER

Xilinx recommends that these internal termination circuits (weak pull-ups, weak pull-
downs and weak keepers) not be used to hold a logic level for a 3-stated signal. It is highly
likely that coupled noise from a PCB trace would swamp out the effect of these termination
circuits. The intended application of the internal termination circuits is to hold logic values
for unconnected pins to prevent spurious switching and consequent power loss. Internal
termination circuits are not intended to drive board-level traces to a defined logic level.

Differential Termination Attribute

The differential termination (DIFF_TERM) attribute is designed for the Virtex-4 FPGA
supported differential input I/O standards. It is used to turn the built-in 100Q differential
termination on or off.

The allowed values for the DIFF_TERM attribute are:

e TRUE
e FALSE (Default)

To specify the DIFF_TERM attribute, set the appropriate value in the generic map (VHDL)
or inline parameter (Verilog) of the instantiated IBUFDS or IBUFGDS component. Please
refer to the ISE® software Language Templates or the Virtex-4 FPGA HDL Libraries Guide
for the proper syntax for instantiating this component and setting the DIFF_TERM
attribute.

Virtex-4 FPGA 1/0O Resource VHDL/Verilog Examples

The following examples are VHDL and Verilog syntaxes to declare a standard for Virtex-4
FPGA I/0 resources. The example uses IOBUE.

VHDL Template

--Example IOBUF component declaration

component IOBUF

generic (
CAPACITANCE : string = "DONT_CARE";
DRIVE : integer = 12;
IOSTANDARD : string = "LVCMOS25";
Virtex-4 FPGA User Guide www.Xxilinx.com 251

UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 6: SelectlO Resources

SIXILINX®

SLEW string := "SLOW"
)
port (
O : out std_ulogic;
IO : inout std_ulogic;
I : in std_ulogic;
T : in std_ulogic

end component;

--Example IOBUF instantiation

U_IOBUF
Port map (
O => user_o,
IO => user_io
I => user_i,
T => user_t

)

Verilog Template

IOBUF

’

//Example IOBUF module declaration

module IOBUF

parameter
parameter
parameter
parameter

output O;

(0, 10, I, T);

CAPACITANCE = "DONT_CARE";
DRIVE = 12;
IOSTANDARD = "LVCMOS25";

SLEW = "SLOW";

inout IO;

input I,

T;

tri0 GTS = glbl.GTS;

or 01 (ts, GTS, T);

bufif0 T1
buf B1 (O,
endmodule

(IO, I, ts);

I0);

//Example IOBUF instantiation

IOBUF U_IOBUF
.O(user_o),
.I0(user_io),
.I(user_i),
.T(user_t));

(

252

www.Xxilinx.com

Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

2:)(||_|NX® Specific Guidelines for Virtex-4 FPGA 1/O Supported Standards

Specific Guidelines for Virtex-4 FPGA 1/0O Supported Standards

The following sections provide an overview of the I/O standards supported by all Virtex-4
devices.

While most Virtex-4 FPGA 1/O supported standards specify a range of allowed voltages,
this chapter records typical voltage values only. Detailed information on each specification
can be found on the Electronic Industry Alliance JEDEC website at http://www.jedec.org.

LVTTL (Low Voltage Transistor-Transistor Logic)

The low-voltage TTL (LVTTL) standard is a general purpose EIA /JESDSA standard for
3.3V applications using an LVITL input buffer and a push-pull output buffer. This
standard requires a 3.3V input and output supply voltage (Vcco), but does not require the
use of a reference voltage (Vggg) or a termination voltage (V).

Sample circuits illustrating both unidirectional and bidirectional LVITL termination
techniques are shown in Figure 6-25 and Figure 6-26.

Note: V1t is any voltage from OV to Voo Ug070_6_25 071904

Figure 6-25: LVTTL Unidirectional Termination

Virtex-4 FPGA User Guide www.Xxilinx.com 253
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com
http://www.jedec.org

Chapter 6: SelectlO Resources 2:)(||_|NX®

Note: V1 is any voltage from OV to Voo

ug070_6_26_071904

Figure 6-26: LVTTL Bidirectional Termination
Table 6-1 lists the LVTTL DC voltage specifications.

Table 6-1: LVTTL DC Voltage Specifications

Parameter Min Typ Max
Vceo 3.0 33 3.45
VREF - - -
Vrr - - -
Via 2.0 - 3.45
' 0.2 - 0.8
Vou 2.4 - -
VoL - - 0.4
Ioy at Voy (mA) Note (2) - -
Iorat Vor, (mA) Note (2) - -
Notes:

1. Vor and Vg for lower drive currents are sample tested.
2. Supported DRIVE strengths are 2/4/6/8/12 /16/24 mA.

254 www.Xxilinx.com Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

SOXILINX®

Specific Guidelines for Virtex-4 FPGA 1/O Supported Standards

Table 6-2 details the allowed attributes that can be applied to the LVITL I/O standard.

Table 6-2: Allowed Attributes for the LVTTL I/O Standard

Primitives
Attributes
IBUF/IBUFG OBUF/OBUFT IOBUF
IOSTANDARD LVTTL LVTTL LVITL
CAPACITANCE LOW, NORMAL, DONT_CARE
DRIVE UNUSED 2,4,6,8,12,16,24 2,4,6,8,12,16,24
SLEW UNUSED {FAST, SLOW} {FAST, SLOW}

LVCMOS (Low Voltage Complementary Metal Oxide Semiconductor)

LVCMOS is a widely used switching standard implemented in CMOS transistors. This
standard is defined by JEDEC (JESD 8-5).

Sample circuits illustrating both unidirectional and bidirectional LVCMOS termination
techniques are shown in Figure 6-27 and Figure 6-28.

Note: V1 is any voltage from 0V to Voo

ug070_6_27_071904

Figure 6-27: LVCMOS Unidirectional Termination

Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

www.Xxilinx.com 255

http://www.xilinx.com

Chapter 6: SelectlO Resources

SIXILINX®

________IOTB] [ios
LVCMOS | | LVCMOS
|
’XE Z A
ﬁ> . D& %
| |
| |
| |
| |
| |
|
] T
Bt U Vi e T
LVCMOS LVCMOS

Note: V1 is any voltage from OV to Voo

ug070_6_28_071904

Figure 6-28: LVCMOS Bidirectional Termination

Table 6-3 details the allowed attributes that can be applied to the LVCMOS33 and
LVCMOS25 1/0 standards.

Table 6-3: Allowed Attributes for the LVCMOS33 and LVCMOS25 I/0 Standards

Primitives
Attributes

IBUF/IBUFG OBUF/OBUFT IOBUF
IOSTANDARD LVCMOS33 LVCMOS33 LVCMOS33

LVCMOS25 LVCMOS25 LVCMOS25
CAPACITANCE LOW, NORMAL, DONT_CARE
DRIVE UNUSED 2,4,6,8,12,16,24 2,4,6,8,12,16,24
SLEW UNUSED {FAST, SLOW} {FAST, SLOW}

256

www.Xxilinx.com

Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

SOXILINX®

Specific Guidelines for Virtex-4 FPGA 1/O Supported Standards

Table 6-4 details the allowed attributes that can be applied to the LVCMOS18 and

LVCMOS15 I/0 standards.

Table 6-4: Allowed Attributes for the LVCMOS18 and LVCMOS15 I/0 Standard

Primitives
Attributes

IBUF/IBUFG OBUF/OBUFT IOBUF
IOSTANDARD LVCMOS18 LVCMOS18 LVCMOS18

LVCMOS15 LVCMOS15 LVCMOS15
CAPACITANCE LOW, NORMAL, DONT_CARE
DRIVE UNUSED 2,4,6,8,12,16 2,4,6,8,12,16
SLEW UNUSED {FAST, SLOW} {FAST, SLOW}

LVDCI (Low Voltage Digitally Controlled Impedance)

Using these 1/O buffers configures the outputs as controlled impedance drivers. The

receiver of LVDClI is identical to a LVCMOS receiver. Some I/0 standards, such as LVTTL,
LVCMOS, etc., must have a drive impedance that matches the characteristic impedance of
the driven line. Virtex-4 devices provide a controlled impedance output driver to provide
series termination without external source termination resistors. The impedance is set by
the common external reference resistors, with resistance equal to the trace characteristic

impedance, Z.

Sample circuits illustrating both unidirectional and bidirectional termination techniques
for a controlled impedance driver are shown in Figure 6-29 and Figure 6-30. The DCI1/O

standards supporting a controlled impedance driver are: LVDCI_15, LVDCI_18,
LVDCI_25, and LVDCI_33.

Ro=Rvrn=RyrP =701
__________ J

UG070_6_29_031308

Figure 6-29: Controlled Impedance Driver with Unidirectional Termination

=

Ro=Rvrn=Ryrp =20

UG070_6_30_031308

Figure 6-30: Controlled Impedance Driver with Bidirectional Termination

Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

www.Xxilinx.com

257

http://www.xilinx.com

Chapter 6: SelectlO Resources 2:)(||_|NX®

LVDCI_DV2

A controlled impedance driver with half impedance (source termination) can also provide
drivers with one half of the impedance of the reference resistors. The I/O standards
supporting a controlled impedance driver with half impedance are: LVDCI_DV2_15,
LVDCI_DV2_18, and LVDCI_DV2_25. Figure 6-31 and Figure 6-32 illustrate a controlled
driver with half impedance unidirectional and bidirectional termination.

To match the drive impedance to Z; when using a driver with half impedance, the
reference resistor R must be twice Z.

NP

UG070_6_31_031308

Figure 6-31: Controlled Impedance Driver with Half Impedance
Unidirectional Termination

LvDCI_DVv2 |

o o

LvDCI_Dv2

Ro = %2RvRN = "2Rvrp = %o

UG070_6_32_031308

Figure 6-32: Controlled Impedance Driver with Half Impedance
Bidirectional Termination

There are no drive strength settings for LVDCI drivers. When the driver impedance is one-
half of the VRN /VRP reference resistors, it is indicated by the addition of DV2 to the
attribute name.

Table 6-5 lists the LVCMOS, LVDCI, and LVDCI_DV2 voltage specifications.
Table 6-5: LVCMOS, LVDCI, and LVDCI_DV2 DC Voltage Specifications at Various Voltage References

+3.3V +2.5V +1.8V +1.5V
Standard - -

Min Typ Max Min Typ Max Min Typ Max Min Typ Max
Veeo [V 3.0 3.3 3.6 2.3 2.5 2.7 1.7 1.8 1.9 143 1.5 1.57
Vg [V] 2.0 - 3.6 1.7 - 2.7 1.19 - 1.95 1.05 - 1.65
VL [V] -0.5 - 0.8 -0.5 - 0.7 -0.5 - 0.4 -0.5 - 0.3
Vou [V] 2.6 - - 1.9 - - 1.3 - - - 1.05 -
VoL [V] - - 04 - - 0.4 - - 0.4 - - 0.4
Iy [RA] - +5 - - +5 - - +5 - - +5 -

Notes: Vg, and Vgy for lower drive currents are sample tested.

258 www.Xxilinx.com Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

2:)(||_|NX® Specific Guidelines for Virtex-4 FPGA 1/O Supported Standards

HSLVDCI (High-Speed Low Voltage Digitally Controlled Impedance)

The HSLVDCI standard is intended for bidirectional use. The driver is identical to LVDCI,
while the input is identical to HSTL and SSTL. By using a Vggg-referenced input,
HSLVDCI allows greater input sensitivity at the receiver than when using a single-ended
LVCMOS-type receiver.

Sample circuits illustrating both unidirectional and bidirectional termination techniques
for an HSLVDCI controlled impedance driver are shown in Figure 6-29 and Figure 6-30.
The DCI 1/O standards supporting a controlled impedance driver with a Vigp referenced
input are: HSLVDCI_15, HSLVDCI_18, HSLVDCI_25, and HSLVDCI_33.

—— e —— e

N

@
a
V

UG070_6_80_031308

Figure 6-33: HSLVDCI Controlled Impedance Driver with Unidirectional Termination

HSLVDCI
HSLVDCI

@ d >

Ro=Ryrn=Ryrp =2

Ro =Rvrn =Pvrr =20
UG070_6_81_031308
Figure 6-34: HSLVDCI Controlled Impedance Driver with Bidirectional Termination
For output DC voltage specifications, refer to the LVDCI Vg and Vg entries in Table 6-5.
Table 6-6 lists the input DC voltage specifications when using HSLVDCI. Valid values of

Veeo are 1.5V, 1.8V, 2.5V, and 3.3V. Select Vggp to provide the optimum noise margin in
specific use conditions.

Table 6-6: HSLVDCI Input DC Voltage Specifications

Standard Min Typ Max
VREFR - Veco/2 -
VIH VREF +0.1 — —
Virtex-4 FPGA User Guide www.Xxilinx.com 259

UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 6: SelectlO Resources i:)("JNX®

Table 6-7 details the allowed attributes that can be applied to the LVDCI, HSLVDCI, and
LVDCI_DV21/0 standards.

Table 6-7: Allowed Attributes of the LVDCI, HSLVDCI, and LVDCI_DV2 I/O
Standards

Primitives
Attributes
IBUF/IBUFG OBUF/OBUFT IOBUF
IOSTANDARD LVDCI_15, LVDCI_18, LVDCI_25, LVDCI_33
LVDCI_DV2_15,LVDCI_DV2_18, LVDCI_DV2_25, HSLVDCI_15,
HSLVDCI_18, HSLVDCI_25, HSLVDCI_33
CAPACITANCE LOW, NORMAL, DONT_CARE

PCIX, PCI33, PCI66 (Peripheral Component Interface)

The PCI standard specifies support for 33 MHz, 66 MHz, and 133 MHz PCI bus
applications. It uses an LVITL input buffer and a push-pull output buffer. This standard
does not require the use of a reference voltage (Vggg) or a board termination voltage (V).
However, it does require 3.3V input/output source voltage (Vo).

A PCI undershoot/overshoot specification could require Vg to be regulated at 3.0V as
discussed in “Regulating VCCO at 3.0V,” page 306. This is not necessary if overshoot and
undershoot are controlled by careful design.

Table 6-8 lists the DC voltage specifications.

Table 6-8: PCI33_3, PCI66_3, and PCIX DC Voltage Specifications

Parameter Min Typ Max
Veeo 3.0 3.3 3.5
VREF - - -
Vir - - -
Vi = 0.5 x Veco 15 1.65 Veeo + 05
Vi =03 x Veeo -0.5 0.99 1.08
Vou = 0.9 x Veco 2.7 - -
VoL =0.1 x Veco - - 0.36
Ioy at Voy (mA) (Note 1) - -
Iop at Vor (mA) (Note 1) . —
Notes:

1. Tested according to the relevant specification.

Table 6-9 details the allowed attributes that can also be applied to the PCI33_3, PCI66_3,
and PCIX I/0O standards.
Table 6-9: Allowed Attributes of the PCI33_3, PCI66_3, and PCIX I/O Standards

260

Primitives
Attributes
IBUF/IBUFG OBUF/OBUFT IOBUF
IOSTANDARD PCI33_3, PCI66_3, and PCIX
CAPACITANCE LOW, NORMAL, DONT_CARE
www.Xxilinx.com Virtex-4 FPGA User Guide

UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

2:)(||_|NX® Specific Guidelines for Virtex-4 FPGA 1/O Supported Standards

GTL (Gunning Transceiver Logic)

The Gunning Transceiver Logic (GTL) standard is a high-speed bus standard (JESD8.3)
invented by Xerox. Xilinx has implemented the terminated variation for this standard. This
standard requires a differential amplifier input buffer and an open-drain output buffer.
The negative terminal of the differential input buffer is referenced to the Vggg pin.

A sample circuit illustrating a valid termination technique for GTL with external parallel
termination and unconnected Vg is shown in Figure 6-35.

— —_—— e

108 | Vir=12V Vip=12V | 0B

Rp = Zo = 500

Rp
o E20:50}%

UG070_6_33_031308

Figure 6-35: GTL with External Parallel Termination and Unconnected V¢co

GTL_DCI Usage

GTL does not require a Vo voltage. However, for GTL_DCI, Vo must be connected to
1.2V. GTL_DCI provides single termination to Vo for inputs or outputs.

A sample circuit illustrating a valid termination technique for GTL_DCI with internal
parallel driver and receiver termination is shown in Figure 6-36.

UG070_6_34_031308

Figure 6-36: GTL_DCI with Internal Parallel Driver and Receiver Termination

Table 6-10 lists the GTL DC voltage specifications.
Table 6-10: GTL DC Voltage Specifications

Parameter Min Typ Max
Veco - N/A -
Vrep =N x Vpp D 0.74 0.8 0.86
Vot 1.14 1.2 1.26
Vig = Vggr + 0.05 0.79 0.85 -
Vi = Vggp - 0.05 - 0.75 0.81
Von - - -
VoL - 0.2 0.4
Iop at Vop (mA) - - -
Iop at Vo, (mA) at 0.4V 32 - -

Virtex-4 FPGA User Guide www.xilinx.com 261

UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 6: SelectlO Resources 2:)(||_|NX®

Table 6-10: GTL DC Voltage Specifications (Continued)
Parameter Min Typ Max
IOL at VOL (mA) at 0.2V - - 40

Notes:
1. N must be greater than or equal to 0.653 and less than or equal to 0.68.

Table 6-11 details the allowed attributes that can also be applied to the GTL I/O standards.
Table 6-11: Allowed Attributes of the GTL I/O Standards

Primitives
Attributes
IBUF/IBUFG OBUF/OBUFT I0BUF
IOSTANDARD GTL and GTL_DCI
CAPACITANCE LOW, NORMAL, DONT_CARE

GTLP (Gunning Transceiver Logic Plus)

The Gunning Transceiver Logic Plus or GTL+ standard is a high-speed bus standard
(JESD8.3) first used by the Pentium Pro Processor. This standard requires a differential
amplifier input buffer and a open-drain output buffer. The negative terminal of the
differential input buffer is referenced to the Vigg pin.

A sample circuit illustrating a valid termination technique for GTL+ with external parallel
termination and unconnected Vo is shown in Figure 6-37.

_________ . P
I I
Voo = Unconnected | AP =20 =50 Rp =20 =500
D 0% =50 i *
I | -
_{ | | VRge = 1.0V

UG070_6_35_031308

Figure 6-37: GTL+ with External Parallel Termination and Unconnected V¢co

GTLP_DCI Usage

GTL+ does not require a Vo voltage. However, for GTLP_DCI, Vo must be connected
to 1.5V. GTLP_DCI provides single termination to Vo for inputs or outputs.

A sample circuit illustrating a valid termination technique for GTLP_DCI with internal
parallel driver and receiver termination is shown in Figure 6-38.

UG070_6_36_031308

Figure 6-38: GTLP_DCI Internal Parallel Driver and Receiver Termination

262 www.Xxilinx.com Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

2:)(||_|NX® Specific Guidelines for Virtex-4 FPGA 1/O Supported Standards

Table 6-12 lists the GTLP DC voltage specifications.

Table 6-12: GTLP DC Voltage Specifications

Min Typ Max
Veco - - -
Vrep =N x Vpp D 0.88 1.0 1.12
Vrr 1.35 15 1.65
Vi = Vg + 0.1 0.98 1.1 -
Vi = Vrgp - 0.1 - 0.9 1.02
Von - - -
VoL 03 0.45 0.6
Iog at Vo (mA) - - -
Ior at VoL (mA) at 0.6V 36 - -
Iop at VoL (mA) at 0.3V - - 48

Notes:
1. N must be greater than or equal to 0.653 and less than or equal to 0.68.

Table 6-13 details the allowed attributes that can be applied to the GTLP I/O standards.

Table 6-13: Allowed Attributes of the GTLP I/0 Standards

Attributes Input Output Bidirectional
IOSTANDARD GTLP and GTLP_DCI
CAPACITANCE LOW, NORMAL, DONT_CARE

HSTL (High-Speed Transceiver Logic)

The High-Speed Transceiver Logic (HSTL) standard is a general-purpose high-speed, 1.5V
or 1.8V bus standard sponsored by IBM (EIA /JESD8-6). This standard has four variations
or classes. To support clocking high-speed memory interfaces, a CSE differential version of
this standard was added. Virtex-4 FPGA 1/0 supports all four classes and the differential
version. This standard requires a differential amplifier input buffer and a push-pull output
buffer.

HSTL_ I, HSTL_ Ill, HSTL_1_18, HSTL_ Ill_18 Usage

HSTL_I uses Vccp/2 as a parallel termination voltage (V). HSTL_III uses Vo as a
parallel termination voltage (V). HSTL_I and HSTL_III are intended to be used in
unidirectional links.

HSTL_ |_DCI, HSTL_ IlI_DCI, HSTL_ I_DCI_18, HSTL_ Ill_DCI_18 Usage

HSTL_I_DCI provides on-chip split thevenin termination powered from Vc(, creating an
equivalent parallel termination voltage (V) of Vcco/2. HSTL_I_DCI and HSTL_III_DCI
are intended to be used in unidirectional links.

Virtex-4 FPGA User Guide www.Xxilinx.com 263
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 6: SelectlO Resources XX"JNX@

HSTL_ Il, HSTL_ IV, HSTL_11_18, HSTL_ IV_18 Usage

HSTL_II uses Vco/2 as a parallel termination voltage (Vp). HSTL_IV uses Vg as a
parallel termination voltage (Vyp). HSTL_II and HSTL_IV are intended to be used in

bidirectional links.

HSTL_ II_DCI, HSTL_ IV_DCI, HSTL_ II_DCI_18, HSTL_ IV_DCI_18 Usage

HSTL_II_DCI provides on-chip split thevenin termination powered from Vo, creating
an equivalent termination voltage of Vccp/2. HSTL_IV_ DCI provides single termination
to Veco (Vrp)- HSTL_II_DCI and HSTL_IV_ DCI are intended to be used in bidirectional
links.

DIFF_HSTL_ Il, DIFF_HSTL_II_18

Differential HSTL class II pairs complimentary single-ended HSTL_II type drivers with a
differential receiver. Differential HSTL Class Il is intended to be used in bidirectional links.
Differential HSTL can also be used for differential clock and DQS signals in memory
interface designs.

DIFF_HSTL_II_DCI, DIFF_HSTL_II_DCI_18

Differential HSTL class II pairs complimentary single-ended HSTL_II type drivers with a
differential receiver, including on-chip differential termination. Differential HSTL Class II
is intended to be used in bidirectional links. Differential HSTL can also be used for
differential clock and DQS signals in memory interface designs.

264

www.Xxilinx.com Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

2:)(||_|NX® Specific Guidelines for Virtex-4 FPGA 1/O Supported Standards

HSTL Class |

Figure 6-39 shows a sample circuit illustrating a valid termination technique for HSTL
Class I.

External Termination

—————— 108 | V=07V mgg™ T T T T T T T T T
HSTLI | ' HSTL_|
I Rp = Zg = 50Q :
|
Qz) DJ ’
: : VReg = 0.75V p
| 'L
DCI
______ I0B | Pog™
: | Voo = 1.5V
|
|
|
| | 2Rygp = 2Zg= 1000
HSTL_I_DCI : | HSTL_I_DCI
|

2RypN = 2Zg= 1000

+
% VRer = 0.75V —>

ug070_6_37_071904

Figure 6-39: HSTL Class | Termination

Table 6-14 lists the HSTL Class I DC voltage specifications.

Table 6-14: HSTL Class | DC Voltage Specifications

Min Typ Max
Veco 1.40 1.50 1.60
Vigs @ 0.68 0.75 0.90
Vor - Veeo x 0.5 -
Vi Vgeg + 0.1 - -
ViL - - Vrer - 0.1
Von Veco-04 - -
Vor - - 0.4
Iog at Vop (mA)D -8 - -
Ior at Vor, (mA)MD 8 - _

Notes:
1. Vo and Vo for lower drive currents are sample tested.

2. Per EIA/JESDS8-6, “The value of Vrgris to be selected by the user to provide optimum noise margin in
the use conditions specified by the user.”

Virtex-4 FPGA User Guide www.Xxilinx.com 265
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 6: SelectlO Resources i:)("JNX®

HSTL Class I

Figure 6-40 shows a sample circuit illustrating a valid termination technique for HSTL
Class II (1.5V) with unidirectional termination.

External Termination

I o T V=075V Vip=078V g™ " T T T T T T T T T
HsTLI | | HSTL_I
| Rp=2Zp=50Q Rp=2Zy=50Q |
Q) ¢ +
| | Vggp=0.75V p
| |
| |
___________ L - -
DCI
- oB] :ToE _________________
Vooo =1 5V: | Vogo =15V
|
I |
2Ry pp = 2Zy= 100Q | | 2Rypp = 2Zy= 100Q
HSTL_II_DCI : : HSTL_II_DCI
||> 5 X >
| -
| : VRgE = 0.75V
I |
2Ry/gN = 2Zy= 100Q | | 2Ry gy = 2Zg= 100Q
I |
_________________ | L
ug070_6_38_071904
Figure 6-40: HSTL (1.5V) Class Il Unidirectional Termination
266 www.xilinx.com Virtex-4 FPGA User Guide

UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

2:)(||_|NX® Specific Guidelines for Virtex-4 FPGA 1/O Supported Standards

Figure 6-41 shows a sample circuit illustrating a valid termination technique for HSTL
Class IT (1.5V) with bidirectional termination.

External Termination
——————————————— Vi =075V Vir=075V ==~~~ — - - ===

HSTL_I
Rp=2(=50Q Rp=2Zy=50Q

|
|
|
|
Vger = 0.75V :
|
|

DCI
o8] o8
|
Voco =15V | | Voco =15V
|
I
2RyRp = 2Zp= 100Q | 2Rypp = 2Zy= 100Q
HSTL_II_DCI : | HSTL_IL_DCI
| |
P B4 Y -
: I Vgeg = 0.75V P
|
I
2RygN = 2Zg= 100Q | :
VReg = 0.75V = : 2RyRN = 2Z0= 1000 %
| LL
_______________________ d -
UG070_6_39_031208
Figure 6-41: HSTL (1.5V) Class Il Bidirectional Termination
Table 6-15 lists the HSTL (1.5V) Class II DC voltage specifications.
Table 6-15: HSTL (1.5V) Class Il DC Voltage Specifications
Min Typ Max
Veeo 1.40 1.50 1.60
Vrer @ 0.68 0.75 0.90
VTT - VCCO x 0.5 -
VIH VREF +0.1 - -
Vou Veco-04 - -
VoL - - 0.4
IOH at VOH (mA)(l) -16 - -
IOL at VOL (mA)(l) 16 - -
Notes:
1. Vgp and Vg for lower drive currents are sample tested.
2. Per EIA/JESD8-6, “The value of Vi is to be selected by the user to provide optimum noise margin in
the use conditions specified by the user.”
Virtex-4 FPGA User Guide www.xilinx.com 267

UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 6: SelectlO Resources i:)("JNX®

Complementary Single-Ended (CSE) Differential HSTL Class Il

Figure 6-42 shows a sample circuit illustrating a valid termination technique for
differential HSTL Class II (1.5V) with unidirectional termination.

External Termination

e S V=0TV ViT=078V oo
|
|
DIFF_HSTL_II : 500 500 |
|
Q2 ¢
: | DIFF_HSTL_II
| |
I I
|
| Vo =075V Vr =075V |
|
|
|
DIFF_HSTL Il : 500 500 |
|
|

ug070_6_40_071904

Figure 6-42: Differential HSTL (1.5V) Class Il Unidirectional Termination

Figure 6-43 shows a sample circuit illustrating a valid termination technique for
differential HSTL Class II (1.5V) with unidirectional DCI termination.

Vego = 15V

DIFF_HSTL_II_DCI
2Rygp = 2Zg= 100Q

2R\gN = 2Zp= 100Q 2RygN = 2Zp= 100Q DIFF_HSTL_Il_DCI

|
|

| +

| Vooo =15V _

|

|

|

2Rypp = 2Zo= 100Q

Vogo = 1.5V

DIFF_HSTL_II_DCI
2Rypp = 2Zo= 100Q

ug070_6_41_071904

Figure 6-43: Differential HSTL (1.5V) Class Il DCI Unidirectional Termination

268 www.Xxilinx.com Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

2:)(||_|NX® Specific Guidelines for Virtex-4 FPGA 1/O Supported Standards

Figure 6-44 shows a sample circuit illustrating a valid termination technique for
differential HSTL Class II (1.5V) with bidirectional termination.

External Termination

A

1 —
0B Vyr=075v Vrp=075v | 0B
|
DIFF_HSTL_Il | DIFF_HSTL_Il
l\ | 500 500 % '
= Qz) 5
L~ . |
|
| Vqr=075V Vo7 =0.75V :
DIFF_HSTL Il | | DIFF_HSTL_II
: 500 50Q |
Z} 0 20 EX}
| |
|
DIFF_HSTL_II | | DIFF_HSTL_II
| |
| I *
| |
| |
|

ug070_6_42_071904

Figure 6-44: Differential HSTL (1.5V) Class Il Bidirectional Termination

Figure 6-45 shows a sample circuit illustrating a valid termination technique for
differential HSTL Class II (1.5V) with bidirectional DCI termination.

DIFF_HSTL_II_DCI

I DIFF_HSTL_II_DCI
2Rypp = 2Zo= 100Q

2Rygp = 2Zp= 100Q

2RypN = 2Zg= 100Q

S
=
AN ——VW— !

DIFF_HSTL_II_DCI DIFF_HSTL_II_DCI

—q

Ve = 1.5V Veann = 1.5V
DIFF_HSTL_II_DCI cco=15 cco

+
< 2Rygp = 2Zy= 100Q

2RygN = 2Zg= 100Q

DIFF_HSTL_II_DCI

2Rypp = 2Zp= 100Q +

%ZRVRN = 2Z4=100Q
ug070_6_43_071904

Figure 6-45: Differential HSTL (1.5V) Class Il DCI Bidirectional Termination

V2
S (R
5
]

HAA—4—AN—]

Virtex-4 FPGA User Guide www.Xxilinx.com 269
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 6: SelectlO Resources 2:)(||_|NX®

Table 6-16 lists the differential HSTL Class II DC voltage specifications.

Table 6-16: Differential HSTL Class Il DC Voltage Specifications

Min Typ Max
Veeo 1.40 1.50 1.60
VTT - VCCO X 05 -
VIN (DC) -0.30 - VCCO +0.30
VDIFF (DC) 0.20 - VCCO + 0.60
Ve (DO)M 0.68 - 0.90
VDIFF (AC) 0.40 - VCCO +0.60
Vy (Crossover)? 0.68 - 0.90
Notes:
1. Common mode voltage: Vop = Vp - (Vp - VN)/2
2. Crossover point: Vy where Vp — V= 0 (AC coupled)
HSTL Class Il
Figure 6-46 shows a sample circuit illustrating a valid termination technique for HSTL
Class II1.
External Termination
—————— 108 | V=18V mgg™ T T T T T T T T T T T
HSTL_III I I HSTL_III
I Rp = Zg = 50Q :
|
Q%) D +
| : VReg = 0.9V >
|
| |
_______ _l L - -
DCI
______ I0B | Yo
: : Vego = 1.5V
|
|
| | Rygp = Zo= 50Q
HSTL_II_DCI : | HSTL_III_DCI
|
Q20— +
| : VRer = 0.9V >
|
________ | e
ug070_6_44_071904
Figure 6-46: HSTL Class lll Termination
270 www.xilinx.com Virtex-4 FPGA User Guide

UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

2:)(||_|NX® Specific Guidelines for Virtex-4 FPGA 1/O Supported Standards

Table 6-17 lists the HSTL Class III DC voltage specifications.

Table 6-17: HSTL Class Il DC Voltage Specifications

Min Typ Max
Veco 1.40 1.50 1.60
Vies @ - 0.90 -
Vrr - Veco -
Vin Vigr + 0.1 - -
ViL - - VRer - 0.1
Von Veco-04 - -
Vor - - 0.4
Iog at Vog (mA)D -8 - -
Ior at Vor, (mA)D 24 - -

Notes:
1. Vo and Vo for lower drive currents are sample tested.

2. Per EIA/JESDS8-6, “The value of Vyggis to be selected by the user to provide optimum noise margin in
the use conditions specified by the user.”

HSTL Class IV

Figure 6-47 shows a sample circuit illustrating a valid unidirectional termination technique
for HSTL Class IV.

External Termination
——————————— Vir=15V Ver=158V o=~~~ ————————

IOB | I0B
HSTLIV | | HSTL_IV
| Rp=Z5=50Q Rp=2Zg=50Q :
| | Vgge=0.9V >
| |
| |
___________ L - -
DCI
_________________TO_B] Mo~
Veco=1.5V 1 I Voco =15V
|
I [
Ryge = Zo= 50Q | | Rygp = Zg= 50Q
HSTL_IV_DCI : : HSTL IV DCI
ll\/ O O E S +
| -
| : VRer = 0.9V
___________________ I b
ug070_6_45_071904
Figure 6-47: HSTL Class IV Unidirectional Termination
Virtex-4 FPGA User Guide www.xilinx.com 271

UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 6: SelectlO Resources i:)("JNX®

Figure 6-48 shows a sample circuit illustrating a valid bidirectional termination technique
for HSTL Class IV.

External Termination
——————————————— Vip=1.5V Vip=156V == —————————————

Rp=2(=50Q Rp=2Zy=500

DCI
o8] o8
|
|
I
Rygp = Zg= 502 | Rygp = Zo=650Q
HSTL_IV_DCI : | HSTL_IV_DCI
|
I -
| | VReg = 0.9V
| |
| I
|
S | | Q‘
| |
_______________________ 1 ——
UG070_6_46_031208
Figure 6-48: HSTL Class IV Bidirectional Termination
Table 6-18 lists the HSTL Class IV DC voltage specifications.
Table 6-18: HSTL Class IV DC Voltage Specifications
Min Typ Max
Veeo 1.40 1.50 1.60
Vrr - Veco -
VIH VREF +0.1 - -
Vor - - 0.4
IOH at VOH (mA)(l) -8 -
IOL at VOL (mA)(l) 48 - -
Notes:
1. Vo and Vo for lower drive currents are sample tested.
2. Per EIA/JESDS8-6, “The value of Viggis to be selected by the user to provide optimum noise margin in
the use conditions specified by the user.”
272 www.xilinx.com Virtex-4 FPGA User Guide

UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

2:)(||_|NX® Specific Guidelines for Virtex-4 FPGA 1/O Supported Standards

HSTL Class | (1.8V)

Figure 6-49 shows a sample circuit illustrating a valid termination technique for HSTL
Class I (1.8V).

External Termination

—————— 108 | V=09V mgg™ ~ T T T T T T T T T
HSTL I 18 | ' HSTL I 18
I Rp = Zg = 50Q :
|
Q72 D +
: : Vger = 0.9V -
| |
_______ | L - .
DCI
______ IOB | Yo~~~ T
| _
| | Veoo = 1.8V
|
| 2Rypp = 2Zo= 1000
HSTL_I_DCI_18: HSTL_I_DCI_18

2RypN = 2Zg= 1000

@51 4>

ug070_6_47_071904

Figure 6-49: HSTL Class | (1.8V) Termination

Table 6-19 lists the HSTL Class I (1.8V) DC voltage specifications.

Table 6-19: HSTL Class | (1.8V) DC Voltage Specifications

Min Typ Max

Veco 1.7 18 1.9
Vrgr @ 0.8 0.9 11
V1T - Veeo x 0.5 -
Vin Vg + 0.1 - -

Vi - - Vrep—-0.1
Vou Veco - 0.4 - -
VoL - - 04
Ioy at Voy (mA)MD -8 - -

Ior at Vor (mA)D 8 - -

Notes:
1. Vor and Vg for lower drive currents are sample tested.

2. Per EIA/JESDS8-6, “The value of Vg is to be selected by the user to provide optimum noise margin in
the use conditions specified by the user.”

Virtex-4 FPGA User Guide www.Xxilinx.com 273
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 6: SelectlO Resources i:)("JNX®

HSTL Class Il (1.8V)

Figure 6-50 shows a sample circuit illustrating a valid termination technique for HSTL
Class II (1.8V) with unidirectional termination.

External Termination

HSTL_II_18 |
[Rp=2Z5=50Q Rp=2j=50Q

|
|
|

2Rygp = 2Z= 100Q
HSTL_II_DCI_18

st
|

2Rypp = 2Zg= 100Q
HSTL_II_DCI_18

@51 4’>

2RypN = 2Zg= 1000 2RygN = 2Zg= 1000

ug070_6_48_071904

Figure 6-50: HSTL Class Il (1.8V) with Unidirectional Termination

274 www.xilinx.com Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

2:)(||_|NX® Specific Guidelines for Virtex-4 FPGA 1/O Supported Standards

Figure 6-51 shows a sample circuit illustrating a valid termination technique for HSTL
Class IT (1.8V) with bidirectional termination.

External Termination
——————————————— Vor =09V Vir=08Yo——————————————

HSTL_II_18

HSTL_II_DCI_18 HSTL_II_DCI_18

>
VRee =09V —2

UG070_6_49_031208

2RypN = 2Zg= 1000

N

VRgg = 0.9V 2Ry =22

_______Eg_____
J
_Eg__

&

Figure 6-51: HSTL Class Il (1.8V) with Bidirectional Termination
Table 6-20 lists the HSTL Class II (1.8V) DC voltage specifications.

Table 6-20: HSTL Class Il (1.8V) DC Voltage Specifications

Min Typ Max

Veco 17 18 19
Vies @ - 0.9 -
Vit - Veeo x 0.5 -
Vin Vger + 0.1 - -

ViL - - Vrep—-0.1
Von Veco-04 - -
Vor - - 0.4
Iog at Voy (mA)D -16 - -

Ior at Vor, (mA)MD 16 - -

Notes:
1. Vgr and Vg for lower drive currents are sample tested.

2. Per EIA/JESDS8-6, “The value of Vg is to be selected by the user to provide optimum noise margin in
the use conditions specified by the user.”

Virtex-4 FPGA User Guide www.Xxilinx.com 275
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 6: SelectlO Resources i:)("JNX®

Complementary Single-Ended (CSE) Differential HSTL Class Il (1.8V)

Figure 6-52 shows a sample circuit illustrating a valid termination technique for
differential HSTL Class II (1.8V) with unidirectional termination.

External Termination

DIFF_HSTL_II_18 I

am i

DIFF_HSTL_lI_18

Vi = 0.9V V=09V

DIFF_HSTL_II_18 500 500

ug070_6_50_71904

Figure 6-52: Differential HSTL (1.8V) Class Il Unidirectional Termination

Figure 6-53 shows a sample circuit illustrating a valid termination technique for
differential HSTL Class II (1.8V) with unidirectional DCI termination.

Veoo = 1.8V

DIFF_HSTL_II_DCI_18 2RVRP — 2ZO= 100Q

l|> O D B¢
%QRVRN =2Z4=100Q % 2RyRN = 2Z=100Q |p|FF HSTL 11 DCI_18

|
| |
| |
| : +
|
Vego = 1.8V | | Vogo =18V ,
|
| |
|

DIFF_HSTL_Il_DCI_18
2Rygp = 2Z(= 100Q 2Rypp = 2Zp= 1000

ug070_6_51_121206

Figure 6-53: Differential HSTL (1.8V) Class Il DCI Unidirectional Termination

276 www.Xxilinx.com Virtex-4 FPGA User Guide
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

2:)(||_|NX® Specific Guidelines for Virtex-4 FPGA 1/O Supported Standards

Figure 6-54 shows a sample circuit illustrating a valid termination technique for
differential HSTL Class II (1.8V) with bidirectional termination.

External Termination

DIFF_HSTL_II_18 DIFF_HSTL_II_18

500 500

4

DIFF_HSTL_II_18

DIFF_HSTL_II_18 DIFF_HSTL_II_18

I
|
I
|
I
|
I
|
I
|
I DIFF_HSTL_II_18
|
I
|
I
|
I
|
I

A

ug070_6_52_071904

Figure 6-54: Differential HSTL (1.8V) Class Il Bidirectional Termination

Figure 6-55 shows a sample circuit illustrating a valid termination technique for
differential HSTL Class II (1.8V) with bidirectional DCI termination.

DIFF_HSTL_II_DCI_18

2RypN = 2Zg= 100Q

2RypN = 2Zg= 1000

|
|
| |
DIFF_HSTL_II_DCI_18 | |
2Rygp = 2Zg= 1000 % | | %m\mp = 2Z5= 1000
%) 20)—1X %

DIFF_HSTL_II_DCI_18

Voco = 1.8V

+
< 2Rygp = 2Zy= 100Q

2RygN = 2Zg= 100Q

Vearn = 1.8V
CCo DIFF_HSTL_II_DCI_18

2Rypp = 2Zo= 100Q +

2RypN = 2Zg= 1000

|
|
HAA—4—AA—]

ug070_6_53_071904

Figure 6-55: Differential HSTL (1.8V) Class Il DCI Bidirectional Termination

Virtex-4 FPGA User Guide www.Xxilinx.com 277
UGO070 (v2.6) December 1, 2008

http://www.xilinx.com

Chapter 6: SelectlO Resources 2:)(||_|NX®

Table 6-21 lists the differential HSTL Class II (1.8V) DC voltage specifications.

Table 6-21: Differential HSTL Class Il (1.8V) DC Voltage Specifications

Min Typ Max
Veco 17 18 1.9
Vrr - Veeo x 0.5 -
Vi (DC) 030 - Veco +0.30
Vpger (DC) 0.20 - Veco + 0.60
Vey (DOD 0.78 - 112
Ve (AC) 0.40 - Veco +0.60
Vy (Crossover) 0.78 - 1.12

Notes:

1. Common mode voltage: Vop = Vp - (Vp - VN)/2
2. Crossover point: Vy where Vp — V= 0 (AC coupled)

HSTL Class IIl (1.8V)

Figure 6-56 shows a sample circuit illustrating a valid termination technique for HSTL
Class III (1.8V).

External Termination

I0B | I0B
HSTL_III_18 ! HSTL_IIl_18
I Rp = Zg = 50Q :
|
Q2 D +
[| Vggp=1.1V -
| |
| |
_______ | L - .
DCI
______ I0B | Mog~ ~~~~ ~~~ 07—
|VCCO=1 8V

Ryrp = Zg= 50Q
HSTL_II_DCI_18

|
|
|
|
|
{ EZO . & > +
| : Vggg = 1.1V y
|

ug070_6_54_071904

Figure 6-56: HSTL Class lll (1.8V) Termination

278 www.Xxilinx.com